A model for the oceanic mass balance of rhenium and implications for the extent of Proterozoic ocean anoxia

A model for the oceanic mass balance of rhenium and implications for the extent of Proterozoic... Emerging geochemical evidence suggests that the atmosphere-ocean system underwent a significant decrease in O2 content following the Great Oxidation Event (GOE), leading to a mid-Proterozoic ocean (ca. 2.0–0.8 Ga) with oxygenated surface waters and predominantly anoxic deep waters. The extent of mid-Proterozoic seafloor anoxia has been recently estimated using mass-balance models based on molybdenum (Mo), uranium (U), and chromium (Cr) enrichments in organic-rich mudrocks (ORM). Here, we use a temporal compilation of concentrations for the redox-sensitive trace metal rhenium (Re) in ORM to provide an independent constraint on the global extent of mid-Proterozoic ocean anoxia and as a tool for more generally exploring how the marine geochemical cycle of Re has changed through time. The compilation reveals that mid-Proterozoic ORM are dominated by low Re concentrations that overall are only mildly higher than those of Archean ORM and significantly lower than many ORM deposited during the ca. 2.22–2.06 Ga Lomagundi Event and during the Phanerozoic Eon. These temporal trends are consistent with a decrease in the oceanic Re inventory in response to an expansion of anoxia after an interval of increased oxygenation during the Lomagundi Event. Mass-balance modeling of the marine Re geochemical cycle indicates that the mid-Proterozoic ORM with low Re enrichments are consistent with extensive seafloor anoxia. Beyond this agreement, these new data bring added value because Re, like the other metals, responds generally to low-oxygen conditions but has its own distinct sensitivity to the varying environmental controls. Thus, we can broaden our capacity to infer nuanced spatiotemporal patterns in ancient redox landscapes. For example, despite the still small number of data, some mid-Proterozoic ORM units have higher Re enrichments that may reflect a larger oceanic Re inventory during transient episodes of ocean oxygenation. An improved understanding of the modern oceanic Re cycle and a higher temporal resolution for the Re compilation will enable further tests of these hypotheses regarding changes in the surficial Re geochemical cycle in response to variations in atmosphere-ocean oxygenation. Nevertheless, the existing Re compilation and model results are in agreement with previous Cr, Mo, and U evidence for pervasively anoxic and ferruginous conditions in mid-Proterozoic oceans. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Geochimica et Cosmochimica Acta Elsevier

A model for the oceanic mass balance of rhenium and implications for the extent of Proterozoic ocean anoxia

Loading next page...
 
/lp/elsevier/a-model-for-the-oceanic-mass-balance-of-rhenium-and-implications-for-cxZtGAr03B
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0016-7037
eISSN
1872-9533
D.O.I.
10.1016/j.gca.2018.01.036
Publisher site
See Article on Publisher Site

Abstract

Emerging geochemical evidence suggests that the atmosphere-ocean system underwent a significant decrease in O2 content following the Great Oxidation Event (GOE), leading to a mid-Proterozoic ocean (ca. 2.0–0.8 Ga) with oxygenated surface waters and predominantly anoxic deep waters. The extent of mid-Proterozoic seafloor anoxia has been recently estimated using mass-balance models based on molybdenum (Mo), uranium (U), and chromium (Cr) enrichments in organic-rich mudrocks (ORM). Here, we use a temporal compilation of concentrations for the redox-sensitive trace metal rhenium (Re) in ORM to provide an independent constraint on the global extent of mid-Proterozoic ocean anoxia and as a tool for more generally exploring how the marine geochemical cycle of Re has changed through time. The compilation reveals that mid-Proterozoic ORM are dominated by low Re concentrations that overall are only mildly higher than those of Archean ORM and significantly lower than many ORM deposited during the ca. 2.22–2.06 Ga Lomagundi Event and during the Phanerozoic Eon. These temporal trends are consistent with a decrease in the oceanic Re inventory in response to an expansion of anoxia after an interval of increased oxygenation during the Lomagundi Event. Mass-balance modeling of the marine Re geochemical cycle indicates that the mid-Proterozoic ORM with low Re enrichments are consistent with extensive seafloor anoxia. Beyond this agreement, these new data bring added value because Re, like the other metals, responds generally to low-oxygen conditions but has its own distinct sensitivity to the varying environmental controls. Thus, we can broaden our capacity to infer nuanced spatiotemporal patterns in ancient redox landscapes. For example, despite the still small number of data, some mid-Proterozoic ORM units have higher Re enrichments that may reflect a larger oceanic Re inventory during transient episodes of ocean oxygenation. An improved understanding of the modern oceanic Re cycle and a higher temporal resolution for the Re compilation will enable further tests of these hypotheses regarding changes in the surficial Re geochemical cycle in response to variations in atmosphere-ocean oxygenation. Nevertheless, the existing Re compilation and model results are in agreement with previous Cr, Mo, and U evidence for pervasively anoxic and ferruginous conditions in mid-Proterozoic oceans.

Journal

Geochimica et Cosmochimica ActaElsevier

Published: Apr 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off