A missense mutation in the plasminogen gene, within the plasminogen kringle 3 domain, in hereditary angioedema with normal C1 inhibitor

A missense mutation in the plasminogen gene, within the plasminogen kringle 3 domain, in... Hereditary angioedema (HAE) is a genetically heterogeneous disease that is characterized by recurrent skin swelling, abdominal pain attacks, and potentially life-threatening upper airway obstruction. The two classic types, HAE types I and II, are both caused by mutations in the complement C1 inhibitor (SERPING1) gene resulting either in a quantitative or a qualitative deficiency of C1 inhibitor. In so-called HAE type III, in contrast, patients show normal C1 inhibitor measurements in plasma ('HAE with normal C1 inhibitor'). As previously shown by us, one subgroup of 'HAE with normal C1 inhibitor' is caused by mutations of the coagulation factor XII (F12) gene. For the present study, following the exclusion of numerous candidate genes, we screened eight unrelated index patients representing eight 'HAE families with normal C1 inhibitor and no F12 mutation' for mutations in the plasminogen (PLG) gene. A rare non-conservative missense mutation was newly identified in exon 9 of the PLG gene. This mutation (c.1100A > G), encountered in three out of eight patients, predicts a lysine-to-glutamic acid substitution in position 311 of the mature protein (p.Lys311Glu). Using isoelectric focusing of plasma samples followed by an immunoblotting procedure we demonstrated that the presence of the mutation is associated with a dysplasminogenemia, namely the presence of an aberrant plasminogen protein. The predicted structural and functional impact of the mutation, its absence in 139 control individuals, and its co-segregation with the phenotype in three large families provide strong support that it causes disease. Extending a previously proposed gene-based alphabetic nomenclature for the various HAE types one may use the term 'HAE type C′ for the HAE entity described here. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biochemical and Biophysical Research Communications Elsevier

A missense mutation in the plasminogen gene, within the plasminogen kringle 3 domain, in hereditary angioedema with normal C1 inhibitor

Loading next page...
 
/lp/elsevier/a-missense-mutation-in-the-plasminogen-gene-within-the-plasminogen-ITO5QK9U1B
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0006-291x
D.O.I.
10.1016/j.bbrc.2017.12.060
Publisher site
See Article on Publisher Site

Abstract

Hereditary angioedema (HAE) is a genetically heterogeneous disease that is characterized by recurrent skin swelling, abdominal pain attacks, and potentially life-threatening upper airway obstruction. The two classic types, HAE types I and II, are both caused by mutations in the complement C1 inhibitor (SERPING1) gene resulting either in a quantitative or a qualitative deficiency of C1 inhibitor. In so-called HAE type III, in contrast, patients show normal C1 inhibitor measurements in plasma ('HAE with normal C1 inhibitor'). As previously shown by us, one subgroup of 'HAE with normal C1 inhibitor' is caused by mutations of the coagulation factor XII (F12) gene. For the present study, following the exclusion of numerous candidate genes, we screened eight unrelated index patients representing eight 'HAE families with normal C1 inhibitor and no F12 mutation' for mutations in the plasminogen (PLG) gene. A rare non-conservative missense mutation was newly identified in exon 9 of the PLG gene. This mutation (c.1100A > G), encountered in three out of eight patients, predicts a lysine-to-glutamic acid substitution in position 311 of the mature protein (p.Lys311Glu). Using isoelectric focusing of plasma samples followed by an immunoblotting procedure we demonstrated that the presence of the mutation is associated with a dysplasminogenemia, namely the presence of an aberrant plasminogen protein. The predicted structural and functional impact of the mutation, its absence in 139 control individuals, and its co-segregation with the phenotype in three large families provide strong support that it causes disease. Extending a previously proposed gene-based alphabetic nomenclature for the various HAE types one may use the term 'HAE type C′ for the HAE entity described here.

Journal

Biochemical and Biophysical Research CommunicationsElsevier

Published: Mar 25, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off