A methodology for the estimation of the effective yield function of isotropic composites

A methodology for the estimation of the effective yield function of isotropic composites In this work we derive a general model for N−phase isotropic, incompressible, rate-independent elasto-plastic materials at finite strains. The model is based on the nonlinear homogenization variational (or modified secant) method which makes use of a linear comparison composite (LCC) material to estimate the effective flow stress of the nonlinear composite material. The homogenization approach leads to an optimization problem which needs to be solved numerically for the general case of a N−phase composite. In the special case of a two-phase composite an analytical result is obtained for the effective flow stress of the elasto-plastic composite material. Next, the model is validated by periodic three-dimensional unit cell calculations comprising a large number of spherical inclusions (of various sizes and of two different types) distributed randomly in a matrix phase. We find that the use of the lower Hashin–Shtrikman bound for the LCC gives the best predictions by comparison with the unit cell calculations for both the macroscopic stress-strain response as well as for the average strains in each of the phases. The formulation is subsequently extended to include hardening of the different phases. Interestingly, the model is found to be in excellent agreement even in the case where each of the phases follows a rather different hardening response. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Solids and Structures Elsevier

A methodology for the estimation of the effective yield function of isotropic composites

Loading next page...
 
/lp/elsevier/a-methodology-for-the-estimation-of-the-effective-yield-function-of-WOKeXSi46k
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier Ltd
ISSN
0020-7683
eISSN
1879-2146
D.O.I.
10.1016/j.ijsolstr.2016.02.022
Publisher site
See Article on Publisher Site

Abstract

In this work we derive a general model for N−phase isotropic, incompressible, rate-independent elasto-plastic materials at finite strains. The model is based on the nonlinear homogenization variational (or modified secant) method which makes use of a linear comparison composite (LCC) material to estimate the effective flow stress of the nonlinear composite material. The homogenization approach leads to an optimization problem which needs to be solved numerically for the general case of a N−phase composite. In the special case of a two-phase composite an analytical result is obtained for the effective flow stress of the elasto-plastic composite material. Next, the model is validated by periodic three-dimensional unit cell calculations comprising a large number of spherical inclusions (of various sizes and of two different types) distributed randomly in a matrix phase. We find that the use of the lower Hashin–Shtrikman bound for the LCC gives the best predictions by comparison with the unit cell calculations for both the macroscopic stress-strain response as well as for the average strains in each of the phases. The formulation is subsequently extended to include hardening of the different phases. Interestingly, the model is found to be in excellent agreement even in the case where each of the phases follows a rather different hardening response.

Journal

International Journal of Solids and StructuresElsevier

Published: Jun 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off