A methodology for sizing a trigeneration plant in mediterranean areas

A methodology for sizing a trigeneration plant in mediterranean areas Combined heat and power production is an old and well-known technique for the rational use of energy and, thanks to more than fifty years of experience, the state of art can be considered very advanced from a technological point of view. Trigeneration, that is combined electric, heat and cooling energy production, is however a quite recent technology and is becoming economically viable thanks to the commercial spread of absorption chillers. In fact, a well-projected trigeneration plant can achieve better results than a cogenerative one. The CHCP plant benefits over CHP will be underlined, showing the effects of regularisation of annual thermal load curves generated by consumption for feeding the absorption chiller, that leads to a more effective choice of the prime mover. Traditional evaluations of CHP or CHCP plants are finalized to calculate thermodynamic efficiency, and not to examine the primary energy savings that is possible to obtain. However, lack of considerations on the methodology used for plant management can deeply influence the obtained results. It is furthermore recognised that a cogeneration or trigenerative plant must be managed in order to strictly follow thermal demand, since it is possible to sell to the public grid the excess electric energy. This study starts from the results on a energetic consumption research in the hotel sector, and in particular from the complete data on thermal and cooling consumption in several European hotels. The authors propose a general and innovative criterion on plant management and determine, on the base of the examined case-studies, some correlations which allow to size the main components of the plant, using only few data which are easy to obtain. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Thermal Engineering Elsevier

A methodology for sizing a trigeneration plant in mediterranean areas

Applied Thermal Engineering, Volume 23 (13) – Sep 1, 2003

Loading next page...
 
/lp/elsevier/a-methodology-for-sizing-a-trigeneration-plant-in-mediterranean-areas-cmsGDLIC3X
Publisher
Elsevier
Copyright
Copyright © 2003 Elsevier Science Ltd
ISSN
1359-4311
eISSN
1873-5606
D.O.I.
10.1016/S1359-4311(03)00130-3
Publisher site
See Article on Publisher Site

Abstract

Combined heat and power production is an old and well-known technique for the rational use of energy and, thanks to more than fifty years of experience, the state of art can be considered very advanced from a technological point of view. Trigeneration, that is combined electric, heat and cooling energy production, is however a quite recent technology and is becoming economically viable thanks to the commercial spread of absorption chillers. In fact, a well-projected trigeneration plant can achieve better results than a cogenerative one. The CHCP plant benefits over CHP will be underlined, showing the effects of regularisation of annual thermal load curves generated by consumption for feeding the absorption chiller, that leads to a more effective choice of the prime mover. Traditional evaluations of CHP or CHCP plants are finalized to calculate thermodynamic efficiency, and not to examine the primary energy savings that is possible to obtain. However, lack of considerations on the methodology used for plant management can deeply influence the obtained results. It is furthermore recognised that a cogeneration or trigenerative plant must be managed in order to strictly follow thermal demand, since it is possible to sell to the public grid the excess electric energy. This study starts from the results on a energetic consumption research in the hotel sector, and in particular from the complete data on thermal and cooling consumption in several European hotels. The authors propose a general and innovative criterion on plant management and determine, on the base of the examined case-studies, some correlations which allow to size the main components of the plant, using only few data which are easy to obtain.

Journal

Applied Thermal EngineeringElsevier

Published: Sep 1, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off