A method for predicting native vegetation condition at regional scales

A method for predicting native vegetation condition at regional scales Regional-scale mapping of vegetation characteristics such as extent, configuration, composition and condition are critical for managing native vegetation. The extent and configuration of native vegetation is typically mapped using remote sensing, and plant species and communities are typically mapped using statistical models built with explanatory variables derived from GIS layers. Such research has paid limited attention to the ‘condition’ of native vegetation and rarely are explanatory variables derived from satellite remote sensing and GIS layers used together to spatially predict vegetation characteristics. We calculated two independent metrics of vegetation condition using field data measured at each of 239 0.1 ha plots. These metrics of vegetation condition were used to develop two continuous maps of vegetation condition across an area of 260,000 ha using statistical models (generalised additive models, GAMs) built with explanatory variables derived from a range of sources including digital elevation models (DEMs), metrics of landscape connective, land use mapping and satellite remote sensing. Both models included significant explanatory variables that were derived from satellite remote sensing and GIS layers. Using a cross-validation technique based on bootstrapping, correlations between observed plot data and predicted data for the two measures of vegetation condition were only reasonable (0.47–0.56). Improved stratified sampling which captures disturbance gradients is a priority for improving models of this type. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Landscape and Urban Planning Elsevier

A method for predicting native vegetation condition at regional scales

Loading next page...
 
/lp/elsevier/a-method-for-predicting-native-vegetation-condition-at-regional-scales-kqi6ZgIf0D
Publisher
Elsevier
Copyright
Copyright © 2009 Elsevier Ltd
ISSN
0169-2046
eISSN
1872-6062
D.O.I.
10.1016/j.landurbplan.2008.11.011
Publisher site
See Article on Publisher Site

Abstract

Regional-scale mapping of vegetation characteristics such as extent, configuration, composition and condition are critical for managing native vegetation. The extent and configuration of native vegetation is typically mapped using remote sensing, and plant species and communities are typically mapped using statistical models built with explanatory variables derived from GIS layers. Such research has paid limited attention to the ‘condition’ of native vegetation and rarely are explanatory variables derived from satellite remote sensing and GIS layers used together to spatially predict vegetation characteristics. We calculated two independent metrics of vegetation condition using field data measured at each of 239 0.1 ha plots. These metrics of vegetation condition were used to develop two continuous maps of vegetation condition across an area of 260,000 ha using statistical models (generalised additive models, GAMs) built with explanatory variables derived from a range of sources including digital elevation models (DEMs), metrics of landscape connective, land use mapping and satellite remote sensing. Both models included significant explanatory variables that were derived from satellite remote sensing and GIS layers. Using a cross-validation technique based on bootstrapping, correlations between observed plot data and predicted data for the two measures of vegetation condition were only reasonable (0.47–0.56). Improved stratified sampling which captures disturbance gradients is a priority for improving models of this type.

Journal

Landscape and Urban PlanningElsevier

Published: Jun 15, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off