“Whoa! It's like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Get 2 Weeks Free

A laminated, flex structure for electronic transport and hybridization of DNA

We have developed the first prototypes of a three-dimensional, electrophoretically driven microlaboratory for the analysis of proteins and DNA. By selecting the appropriate spacing and geometrical configuration, oligonucleotides were transported, in a controlled, rapid fashion, by electrophoresis in free-space. Transport efficiencies over 2 mm distances exceeded 70%. Electrodes of similar design were combined with an electronically addressed DNA hybridization chip to form a fully electrophoretic microlaboratory. In this instance, gold-plated copper electrodes were patterned on a 2 mil thick polyimide substrate. This polyimide layer was stiffened with 20 mil of polyimide to provide support for flip-chip bonding of our standard 100-site Nanochip ™ . This composite structure illustrated three-dimensional transport of target oligonucleotides, through a via in the polyimide, along a series of electrodes and onto the diagnostic chip. Upon reaching the diagnostic chip, electronic hybridization was performed for a competitive reverse dot blot assay. The electronic assay showed a specific to nonspecific ratio in excess of 20:1. These results suggested that this type of structure might be of practical consequence with the development of a microlaboratory for biowarfare applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biosensors and Bioelectronics Elsevier
Loading next page...

You're reading a free preview. Subscribe to read the entire article.

And millions more from thousands of peer-reviewed journals, for just $40/month

Get 2 Weeks Free

To be the best researcher, you need access to the best research

  • With DeepDyve, you can stop worrying about how much articles cost, or if it's too much hassle to order — it's all at your fingertips. Your research is important and deserves the top content.
  • Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.
  • All the latest content is available, no embargo periods.