A hybrid unsupervised method for aspect term and opinion target extraction

A hybrid unsupervised method for aspect term and opinion target extraction Aspect term extraction (ATE) and opinion target extraction (OTE) are two important tasks in fine-grained sentiment analysis field. Existing approaches to ATE and OTE are mainly based on rules or machine learning methods. Rule-based methods are usually unsupervised, but they can’t make use of high level features. Although supervised learning approaches usually outperform the rule-based ones, they need a large number of labeled samples to train their models, which are expensive and time-consuming to annotate. In this paper, we propose a hybrid unsupervised method which can combine rules and machine learning methods to address ATE and OTE tasks. First, we use chunk-level linguistic rules to extract nominal phrase chunks and regard them as candidate opinion targets and aspects. Then we propose to filter irrelevant candidates based on domain correlation. Finally, we use these texts with extracted chunks as pseudo labeled data to train a deep gated recurrent unit (GRU) network for aspect term extraction and opinion target extraction. The experiments on benchmark datasets validate the effectiveness of our approach in extracting opinion targets and aspects with minimal manual annotation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Knowledge-Based Systems Elsevier

A hybrid unsupervised method for aspect term and opinion target extraction

Loading next page...
 
/lp/elsevier/a-hybrid-unsupervised-method-for-aspect-term-and-opinion-target-Nf1sKagI5o
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0950-7051
D.O.I.
10.1016/j.knosys.2018.01.019
Publisher site
See Article on Publisher Site

Abstract

Aspect term extraction (ATE) and opinion target extraction (OTE) are two important tasks in fine-grained sentiment analysis field. Existing approaches to ATE and OTE are mainly based on rules or machine learning methods. Rule-based methods are usually unsupervised, but they can’t make use of high level features. Although supervised learning approaches usually outperform the rule-based ones, they need a large number of labeled samples to train their models, which are expensive and time-consuming to annotate. In this paper, we propose a hybrid unsupervised method which can combine rules and machine learning methods to address ATE and OTE tasks. First, we use chunk-level linguistic rules to extract nominal phrase chunks and regard them as candidate opinion targets and aspects. Then we propose to filter irrelevant candidates based on domain correlation. Finally, we use these texts with extracted chunks as pseudo labeled data to train a deep gated recurrent unit (GRU) network for aspect term extraction and opinion target extraction. The experiments on benchmark datasets validate the effectiveness of our approach in extracting opinion targets and aspects with minimal manual annotation.

Journal

Knowledge-Based SystemsElsevier

Published: May 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off