A hybrid stochastic game for secure control of cyber-physical systems

A hybrid stochastic game for secure control of cyber-physical systems In this paper, we establish a zero-sum, hybrid state stochastic game model for designing defense policies for cyber-physical systems against different types of attacks. With the increasingly integrated properties of cyber-physical systems (CPS) today, security is a challenge for critical infrastructures. Though resilient control and detecting techniques for a specific model of attack have been proposed, to analyze and design detection and defense mechanisms against multiple types of attacks for CPSs requires new system frameworks. Besides security, other requirements such as optimal control cost also need to be considered. The hybrid game model we propose contains physical states that are described by the system dynamics, and a cyber state that represents the detection mode of the system composed by a set of subsystems. A strategy means selecting a subsystem by combining one controller, one estimator and one detector among a finite set of candidate components at each state. Based on the game model, we propose a suboptimal value iteration algorithm for a finite horizon game, and prove that the algorithm results an upper bound for the value of the finite horizon game. A moving-horizon approach is also developed in order to provide a scalable and real-time computation of the switching strategies. Both algorithms aim at obtaining a saddle-point equilibrium policy for balancing the system’s security overhead and control cost. The paper illustrates these concepts using numerical examples, and we compare the results with previously system designs that only equipped with one type of controller. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Automatica Elsevier

A hybrid stochastic game for secure control of cyber-physical systems

Loading next page...
 
/lp/elsevier/a-hybrid-stochastic-game-for-secure-control-of-cyber-physical-systems-Y7nsbIC2jB
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0005-1098
D.O.I.
10.1016/j.automatica.2018.03.012
Publisher site
See Article on Publisher Site

Abstract

In this paper, we establish a zero-sum, hybrid state stochastic game model for designing defense policies for cyber-physical systems against different types of attacks. With the increasingly integrated properties of cyber-physical systems (CPS) today, security is a challenge for critical infrastructures. Though resilient control and detecting techniques for a specific model of attack have been proposed, to analyze and design detection and defense mechanisms against multiple types of attacks for CPSs requires new system frameworks. Besides security, other requirements such as optimal control cost also need to be considered. The hybrid game model we propose contains physical states that are described by the system dynamics, and a cyber state that represents the detection mode of the system composed by a set of subsystems. A strategy means selecting a subsystem by combining one controller, one estimator and one detector among a finite set of candidate components at each state. Based on the game model, we propose a suboptimal value iteration algorithm for a finite horizon game, and prove that the algorithm results an upper bound for the value of the finite horizon game. A moving-horizon approach is also developed in order to provide a scalable and real-time computation of the switching strategies. Both algorithms aim at obtaining a saddle-point equilibrium policy for balancing the system’s security overhead and control cost. The paper illustrates these concepts using numerical examples, and we compare the results with previously system designs that only equipped with one type of controller.

Journal

AutomaticaElsevier

Published: Jul 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off