A high temporal-spatial resolution air pollutant emission inventory for agricultural machinery in China

A high temporal-spatial resolution air pollutant emission inventory for agricultural machinery in... Agricultural machinery is an important non-road mobile source, which can exhaust multi-pollutants, making primary and secondary contributions to the air pollution. China is a significant agricultural country of the world; however, the agricultural machinery emissions research is at an early stage, and an emission inventory with a high temporal-spatial resolution is still needed. In this study, a comprehensive emission inventory with a high temporal-spatial resolution for agricultural machinery in China was first developed. The results showed that the total emissions in 2014 were 262.69 Gg, 249.25 Gg, 1211.39 Gg, 2192.05 Gg, 1448.16 Gg and 25.14 Gg for PM10, PM2.5, THC, NOx, CO and SO2, respectively. Tractors and farm transport vehicles were the top two greatest contributors, accounting for approximately 39.9%-53.6% and 17.4%-24.6%, respectively, of the total emissions of the five pollutants (except THC). The farm transport vehicles contributed the most (81.8%) to the THC emissions. The county-level emissions were further allocated into 1 km × 1 km grids according to source-specific allocation surrogates. The spatial characteristic analysis indicated that high emissions were distributed in northeast, north and central-south China. To obtain a high temporal resolution emission inventory, a comprehensive investigation on the agricultural practice timing in different provinces was conducted. Then, the annual emissions in the different provinces were distributed to a spatial resolution of ten-day periods (i.e. the early, mid- and late ten-day periods in each month). It was found that higher emissions in China occurred in late April, mid-June and early October. In addition, the emission uncertainty was also analyzed based on the Monte Carlo simulation. The estimated high temporal-spatial resolution emission inventory could provide important basic information for environmental/climate implications research, emission control policy making, and air quality modeling. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Cleaner Production Elsevier

A high temporal-spatial resolution air pollutant emission inventory for agricultural machinery in China

Loading next page...
 
/lp/elsevier/a-high-temporal-spatial-resolution-air-pollutant-emission-inventory-HeP2dv3jAs
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0959-6526
D.O.I.
10.1016/j.jclepro.2018.02.120
Publisher site
See Article on Publisher Site

Abstract

Agricultural machinery is an important non-road mobile source, which can exhaust multi-pollutants, making primary and secondary contributions to the air pollution. China is a significant agricultural country of the world; however, the agricultural machinery emissions research is at an early stage, and an emission inventory with a high temporal-spatial resolution is still needed. In this study, a comprehensive emission inventory with a high temporal-spatial resolution for agricultural machinery in China was first developed. The results showed that the total emissions in 2014 were 262.69 Gg, 249.25 Gg, 1211.39 Gg, 2192.05 Gg, 1448.16 Gg and 25.14 Gg for PM10, PM2.5, THC, NOx, CO and SO2, respectively. Tractors and farm transport vehicles were the top two greatest contributors, accounting for approximately 39.9%-53.6% and 17.4%-24.6%, respectively, of the total emissions of the five pollutants (except THC). The farm transport vehicles contributed the most (81.8%) to the THC emissions. The county-level emissions were further allocated into 1 km × 1 km grids according to source-specific allocation surrogates. The spatial characteristic analysis indicated that high emissions were distributed in northeast, north and central-south China. To obtain a high temporal resolution emission inventory, a comprehensive investigation on the agricultural practice timing in different provinces was conducted. Then, the annual emissions in the different provinces were distributed to a spatial resolution of ten-day periods (i.e. the early, mid- and late ten-day periods in each month). It was found that higher emissions in China occurred in late April, mid-June and early October. In addition, the emission uncertainty was also analyzed based on the Monte Carlo simulation. The estimated high temporal-spatial resolution emission inventory could provide important basic information for environmental/climate implications research, emission control policy making, and air quality modeling.

Journal

Journal of Cleaner ProductionElsevier

Published: May 10, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off