A geomorphic and tectonic model for the formation of the flight of Holocene marine terraces at Mahia Peninsula, New Zealand

A geomorphic and tectonic model for the formation of the flight of Holocene marine terraces at... At Table Cape, Mahia Peninsula, North Island, New Zealand, four marine terraces have been uplifted coseismically during the past 3500years. Detailed facies assessment of the terrace coverbed sequence coupled with identification of modern analogues on the active shore platform were used to infer the process of marine terrace formation and to estimate the timing and amount of past uplift events (earthquakes). The modern platform can be subdivided into seven depositional zones: subtidal, outer platform, intertidal sand pockets, inner platform, high-tide, mid-storm, and storm beach. Terrace coverbeds were characterised from two trenches excavated across the full width of the uplifted terrace sequence. Off-lapping packages of high tidal, mid-storm, and storm beach sediments were most common. Outer platform sediments occurred only rarely near the base of some uplifted shore platforms. Overlying the marine sediments were near-horizontal terrestrial deposits of airfall tephra (on the two highest terraces), subsoil, topsoil, rare wedges of colluvial sediment (slopewash) shed from terrace risers, and an anomalous deposit possibly emplaced by a tsunami. Fifty-one radiocarbon ages, obtained from molluscs in the marine coverbeds, showed a general pattern of seaward-younging across the coastal plain and across each terrace and a less pronounced pattern of decreasing age upward in each coverbed sequence. The distinctive stepped geomorphology of the terraces, the facies and age structure of the terrace deposits and historical earthquake causation of similar terraces elsewhere in New Zealand provided the data to invoke an earthquake-driven model for terrace formation. Marine terrace development following an uplift event involved rapid cutting of a new intertidal shore platform and generally regressive deposition of high-tide to storm beach deposits. Following further uplift, the platform became a geomorphic terrace (above marine influence) and was then mantled by terrestrial sediments. On the two highest terraces at Table Cape, airfall tephras mantling the marine coverbeds provided a minimum age for terrace uplift. The youngest radiocarbon ages from high-tide deposits high in the stratigraphy and near the seaward edge of each terrace provided the best estimates for the timing of uplift. Based on the new radiocarbon ages and the constraining airfall tephra ages, we revised the earthquake ages to 3530–3350, 1810–1730, 1560–1300 and 300–100cal. YBP. Associated best estimates of the coseismic uplift amounts were 2.1, 1.4, 1.8, and 3.1m respectively, once we accounted for eustatic sea level changes through the late Holocene. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Geomorphology Elsevier

A geomorphic and tectonic model for the formation of the flight of Holocene marine terraces at Mahia Peninsula, New Zealand

Loading next page...
 
/lp/elsevier/a-geomorphic-and-tectonic-model-for-the-formation-of-the-flight-of-bvQ6OamhRy
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier B.V.
ISSN
0169-555X
eISSN
1872-695X
D.O.I.
10.1016/j.geomorph.2017.10.014
Publisher site
See Article on Publisher Site

Abstract

At Table Cape, Mahia Peninsula, North Island, New Zealand, four marine terraces have been uplifted coseismically during the past 3500years. Detailed facies assessment of the terrace coverbed sequence coupled with identification of modern analogues on the active shore platform were used to infer the process of marine terrace formation and to estimate the timing and amount of past uplift events (earthquakes). The modern platform can be subdivided into seven depositional zones: subtidal, outer platform, intertidal sand pockets, inner platform, high-tide, mid-storm, and storm beach. Terrace coverbeds were characterised from two trenches excavated across the full width of the uplifted terrace sequence. Off-lapping packages of high tidal, mid-storm, and storm beach sediments were most common. Outer platform sediments occurred only rarely near the base of some uplifted shore platforms. Overlying the marine sediments were near-horizontal terrestrial deposits of airfall tephra (on the two highest terraces), subsoil, topsoil, rare wedges of colluvial sediment (slopewash) shed from terrace risers, and an anomalous deposit possibly emplaced by a tsunami. Fifty-one radiocarbon ages, obtained from molluscs in the marine coverbeds, showed a general pattern of seaward-younging across the coastal plain and across each terrace and a less pronounced pattern of decreasing age upward in each coverbed sequence. The distinctive stepped geomorphology of the terraces, the facies and age structure of the terrace deposits and historical earthquake causation of similar terraces elsewhere in New Zealand provided the data to invoke an earthquake-driven model for terrace formation. Marine terrace development following an uplift event involved rapid cutting of a new intertidal shore platform and generally regressive deposition of high-tide to storm beach deposits. Following further uplift, the platform became a geomorphic terrace (above marine influence) and was then mantled by terrestrial sediments. On the two highest terraces at Table Cape, airfall tephras mantling the marine coverbeds provided a minimum age for terrace uplift. The youngest radiocarbon ages from high-tide deposits high in the stratigraphy and near the seaward edge of each terrace provided the best estimates for the timing of uplift. Based on the new radiocarbon ages and the constraining airfall tephra ages, we revised the earthquake ages to 3530–3350, 1810–1730, 1560–1300 and 300–100cal. YBP. Associated best estimates of the coseismic uplift amounts were 2.1, 1.4, 1.8, and 3.1m respectively, once we accounted for eustatic sea level changes through the late Holocene.

Journal

GeomorphologyElsevier

Published: Apr 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial