A facile preparation of superhydrophobic halloysite-based meshes for efficient oil–water separation

A facile preparation of superhydrophobic halloysite-based meshes for efficient oil–water... A superhydrophobic halloysite-based mesh was facilely prepared by spraying epoxy/hexadecyltrimethoxysilane-halloysite nanotubes (HDTMS-HNTs) on stainless steel mesh. The as-prepared mesh was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and optical contact angle meter (OCA). The HNTs modified by HDTMS not only enhanced surface roughness, but also endowed hydrophobicity of the mesh. The mesh, with a static water contact angle of 154° and a sliding angle of 1.5°, was applied to separate a series of oil-water mixtures, such as n-hexane-water, isooctane-water and petroleum ether-water, with high separation efficiency of over 98%. The mesh still kept separation efficiency approximately 98.5% even after 25 separation cycles for n-hexane-water mixture separation. More importantly, the mesh is durable enough to withstand heat, chemical and mechanical challenges, such as hot water, strong alkaline, strong acid and sand abrasion, and high hydrostatic pressure. The as-prepared mesh will be a promising material in oil-water separation, because of the simple, economical and easily scalable preparation method and the excellent separation performance in radical oil-water separation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Clay Science Elsevier

A facile preparation of superhydrophobic halloysite-based meshes for efficient oil–water separation

Loading next page...
 
/lp/elsevier/a-facile-preparation-of-superhydrophobic-halloysite-based-meshes-for-4Fq06yVF5j
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0169-1317
eISSN
1872-9053
D.O.I.
10.1016/j.clay.2018.01.034
Publisher site
See Article on Publisher Site

Abstract

A superhydrophobic halloysite-based mesh was facilely prepared by spraying epoxy/hexadecyltrimethoxysilane-halloysite nanotubes (HDTMS-HNTs) on stainless steel mesh. The as-prepared mesh was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and optical contact angle meter (OCA). The HNTs modified by HDTMS not only enhanced surface roughness, but also endowed hydrophobicity of the mesh. The mesh, with a static water contact angle of 154° and a sliding angle of 1.5°, was applied to separate a series of oil-water mixtures, such as n-hexane-water, isooctane-water and petroleum ether-water, with high separation efficiency of over 98%. The mesh still kept separation efficiency approximately 98.5% even after 25 separation cycles for n-hexane-water mixture separation. More importantly, the mesh is durable enough to withstand heat, chemical and mechanical challenges, such as hot water, strong alkaline, strong acid and sand abrasion, and high hydrostatic pressure. The as-prepared mesh will be a promising material in oil-water separation, because of the simple, economical and easily scalable preparation method and the excellent separation performance in radical oil-water separation.

Journal

Applied Clay ScienceElsevier

Published: May 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off