A dynamic programming based heuristic for the assembly line balancing problem

A dynamic programming based heuristic for the assembly line balancing problem The simple assembly line balancing problem is the simplification of a real problem associated to the assignment of the elementary tasks required for assembly of a product in an assembly line. This problem has been extensively studied in the literature for more than half a century. The present work proposes a new procedure to solve the problem we call Bounded Dynamic Programming. This use of the term Bounded is associated not only with the use of bounds to reduce the state space but also to the reduction of such space based on heuristics. This procedure is capable of obtaining an optimal solution rate of 267 out of 269 instances, which have been used in previous works, thus obtaining the best-known performance for the problem. These results are an improvement from any previous procedure found in the literature even when using smaller computing times. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png European Journal of Operational Research Elsevier

A dynamic programming based heuristic for the assembly line balancing problem

Loading next page...
 
/lp/elsevier/a-dynamic-programming-based-heuristic-for-the-assembly-line-balancing-yHkN7uWpsu
Publisher
Elsevier
Copyright
Copyright © 2008 Elsevier B.V.
ISSN
0377-2217
eISSN
1872-6860
D.O.I.
10.1016/j.ejor.2008.01.016
Publisher site
See Article on Publisher Site

Abstract

The simple assembly line balancing problem is the simplification of a real problem associated to the assignment of the elementary tasks required for assembly of a product in an assembly line. This problem has been extensively studied in the literature for more than half a century. The present work proposes a new procedure to solve the problem we call Bounded Dynamic Programming. This use of the term Bounded is associated not only with the use of bounds to reduce the state space but also to the reduction of such space based on heuristics. This procedure is capable of obtaining an optimal solution rate of 267 out of 269 instances, which have been used in previous works, thus obtaining the best-known performance for the problem. These results are an improvement from any previous procedure found in the literature even when using smaller computing times.

Journal

European Journal of Operational ResearchElsevier

Published: May 1, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off