A direct load control strategy of centralized air-conditioning systems for building fast demand response to urgent requests of smart grids

A direct load control strategy of centralized air-conditioning systems for building fast demand... When receiving an urgent request from a smart grid, shutting down part of operating chillers directly in the air-conditioning system in a building can achieve immediate power reduction. However, no study has addressed how to determine the number of chillers/pumps to be shut down and how to regulate the load of retained equipment systematically during DR events. This paper presents a new approach to address these issues based on three schemes. A power demand optimization scheme predicts the building cooling demand and the power limiting threshold in response to a received DR request. A system sequence control resetting scheme determines the number of operating chillers/pumps to be retained. An online control/regulation scheme ensures the system power following the expected profile by regulating the total chilled water flow delivered to the building and therefore the chiller load. It also employs a cooling distributor to distribute chilled water to individual zones concerning different sensitivities/sacrifices to temperature increases. Case studies are conducted on a simulated dynamic building air-conditioning system. Results show that, during DR events, the proposed strategy can achieve the expected power reduction (i.e., about 23%) and also maintain acceptable zone temperature even though uncertainties exist in the prediction process. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Automation in Construction Elsevier

A direct load control strategy of centralized air-conditioning systems for building fast demand response to urgent requests of smart grids

Loading next page...
 
/lp/elsevier/a-direct-load-control-strategy-of-centralized-air-conditioning-systems-0paz2e2fZL
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier B.V.
ISSN
0926-5805
D.O.I.
10.1016/j.autcon.2017.12.012
Publisher site
See Article on Publisher Site

Abstract

When receiving an urgent request from a smart grid, shutting down part of operating chillers directly in the air-conditioning system in a building can achieve immediate power reduction. However, no study has addressed how to determine the number of chillers/pumps to be shut down and how to regulate the load of retained equipment systematically during DR events. This paper presents a new approach to address these issues based on three schemes. A power demand optimization scheme predicts the building cooling demand and the power limiting threshold in response to a received DR request. A system sequence control resetting scheme determines the number of operating chillers/pumps to be retained. An online control/regulation scheme ensures the system power following the expected profile by regulating the total chilled water flow delivered to the building and therefore the chiller load. It also employs a cooling distributor to distribute chilled water to individual zones concerning different sensitivities/sacrifices to temperature increases. Case studies are conducted on a simulated dynamic building air-conditioning system. Results show that, during DR events, the proposed strategy can achieve the expected power reduction (i.e., about 23%) and also maintain acceptable zone temperature even though uncertainties exist in the prediction process.

Journal

Automation in ConstructionElsevier

Published: Mar 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off