A copula-based joint deficit index for droughts

A copula-based joint deficit index for droughts Current drought information is based on indices that do not capture the joint behaviors of hydrologic variables. To address this limitation, the potential of copulas in characterizing droughts from multiple variables is explored in this study. Starting from the standardized index (SI) algorithm, a modified index accounting for seasonality is proposed for precipitation and streamflow marginals. Utilizing Indiana stations with long-term observations (a minimum of 80 years for precipitation and 50 years for streamflow), the dependence structures of precipitation and streamflow marginals with various window sizes from 1- to 12-months are constructed from empirical copulas. A joint deficit index (JDI) is defined by using the distribution function of copulas. This index provides a probability-based description of the overall drought status. Not only is the proposed JDI able to reflect both emerging and prolonged droughts in a timely manner, it also allows a month-by-month drought assessment such that the required amount of precipitation for achieving normal conditions in future can be computed. The use of JDI is generalizable to other hydrologic variables as evidenced by similar drought severities gleaned from JDIs constructed separately from precipitation and streamflow data. JDI further allows the construction of an inter-variable drought index, where the entire dependence structure of precipitation and streamflow marginals is preserved. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Hydrology Elsevier

A copula-based joint deficit index for droughts

Loading next page...
 
/lp/elsevier/a-copula-based-joint-deficit-index-for-droughts-XBrtO67FUb
Publisher
Elsevier
Copyright
Copyright © 2009 Elsevier B.V.
ISSN
0022-1694
eISSN
1879-2707
D.O.I.
10.1016/j.jhydrol.2009.10.029
Publisher site
See Article on Publisher Site

Abstract

Current drought information is based on indices that do not capture the joint behaviors of hydrologic variables. To address this limitation, the potential of copulas in characterizing droughts from multiple variables is explored in this study. Starting from the standardized index (SI) algorithm, a modified index accounting for seasonality is proposed for precipitation and streamflow marginals. Utilizing Indiana stations with long-term observations (a minimum of 80 years for precipitation and 50 years for streamflow), the dependence structures of precipitation and streamflow marginals with various window sizes from 1- to 12-months are constructed from empirical copulas. A joint deficit index (JDI) is defined by using the distribution function of copulas. This index provides a probability-based description of the overall drought status. Not only is the proposed JDI able to reflect both emerging and prolonged droughts in a timely manner, it also allows a month-by-month drought assessment such that the required amount of precipitation for achieving normal conditions in future can be computed. The use of JDI is generalizable to other hydrologic variables as evidenced by similar drought severities gleaned from JDIs constructed separately from precipitation and streamflow data. JDI further allows the construction of an inter-variable drought index, where the entire dependence structure of precipitation and streamflow marginals is preserved.

Journal

Journal of HydrologyElsevier

Published: Jan 15, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off