A comparative study on electrochemical cycling stability of lithium rich layered cathode materials Li1.2Ni0.13M0.13Mn0.54O2 where M = Fe or Co

A comparative study on electrochemical cycling stability of lithium rich layered cathode... In this work we compare electrochemical cycling stability of Fe containing Li rich phase Li1.2Ni0.13Fe0.13Mn0.54O2 (Fe–Li rich) with the well-known Co containing Li rich composition Li1.2Ni0.13Co0.13Mn0.54O2 (Co–Li rich). During the first charge, the activation plateau corresponding to removal of Li2O from the structure is smaller (removal of 0.6 Li) in the case of Fe–Li rich compared to Co–Li rich composition (0.8 Li removal). Consequently, the Fe compound shows better capacity retention; for example, after 100 cycles Fe–Li rich compound exhibits 20% capacity degradation where as it is about 40% in the case of Co–Li rich phase. The electrochemical and microscopy studies support the fact that compared to Co–Li rich compound, the Fe–Li rich composition display smaller voltage decay and reduced spinel conversion. XPS studies on charged/discharged Fe–Li rich samples show participation of Fe+3/Fe+4 redox during electrochemical cycling which is further supported by our first principles calculations. Also the temperature dependent magnetic studies on charge-discharged samples of Fe–Li rich compound point out that magnetic behavior is sensitive to cation oxidation states and Ni/Li disorder. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Power Sources Elsevier

A comparative study on electrochemical cycling stability of lithium rich layered cathode materials Li1.2Ni0.13M0.13Mn0.54O2 where M = Fe or Co

Loading next page...
 
/lp/elsevier/a-comparative-study-on-electrochemical-cycling-stability-of-lithium-1Kjmo7syM8
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier B.V.
ISSN
0378-7753
D.O.I.
10.1016/j.jpowsour.2016.05.107
Publisher site
See Article on Publisher Site

Abstract

In this work we compare electrochemical cycling stability of Fe containing Li rich phase Li1.2Ni0.13Fe0.13Mn0.54O2 (Fe–Li rich) with the well-known Co containing Li rich composition Li1.2Ni0.13Co0.13Mn0.54O2 (Co–Li rich). During the first charge, the activation plateau corresponding to removal of Li2O from the structure is smaller (removal of 0.6 Li) in the case of Fe–Li rich compared to Co–Li rich composition (0.8 Li removal). Consequently, the Fe compound shows better capacity retention; for example, after 100 cycles Fe–Li rich compound exhibits 20% capacity degradation where as it is about 40% in the case of Co–Li rich phase. The electrochemical and microscopy studies support the fact that compared to Co–Li rich compound, the Fe–Li rich composition display smaller voltage decay and reduced spinel conversion. XPS studies on charged/discharged Fe–Li rich samples show participation of Fe+3/Fe+4 redox during electrochemical cycling which is further supported by our first principles calculations. Also the temperature dependent magnetic studies on charge-discharged samples of Fe–Li rich compound point out that magnetic behavior is sensitive to cation oxidation states and Ni/Li disorder.

Journal

Journal of Power SourcesElsevier

Published: Aug 30, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off