8-Hydroxy-2-deoxyguanosine ameliorates high-fat diet-induced insulin resistance and adipocyte dysfunction in mice

8-Hydroxy-2-deoxyguanosine ameliorates high-fat diet-induced insulin resistance and adipocyte... 8-Hydroxy-2-deoxyguanosine (8-OHdG), a marker of oxidative DNA damage, has been recently shown to exert anti-inflammatory effects through inhibition of Rac1. Inflammation in adipose tissue is a hallmark of obesity-induced insulin resistance, but the therapeutic potential of 8-OHdG in treatment of metabolic diseases has not been fully elucidated. The aim of this study was to examine the effect of exogenously administered 8-OHdG on adipose tissue and whole body metabolism. In cultured adipocytes, 8-OHdG inhibited adipogenesis and reversed TNFα-induced insulin resistance. In high-fat diet (HFD)-induced obese mice, 8-OHdG administration blunted the rise in body weight and fat mass. The decrease in adipose tissue mass by 8-OHdG was due to reduced adipocyte hypertrophy through induction of adipose triglyceride lipase and inhibition of fatty acid synthase expression. 8-OHdG also inhibited the infiltration of macrophages, resulting in amelioration of adipose tissue inflammation and adipokine dysregulation. Moreover, 8-OHdG administration ameliorated adipocyte as well as systemic insulin sensitivity. Both in vivo and in vitro results showed that 8-OHdG induces AMPK activation and reduces JNK activation in adipocytes. In conclusion, our results show that orally administered 8-OHdG protects against HFD-induced metabolic disorders by regulating adipocyte metabolism. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biochemical and Biophysical Research Communications Elsevier

8-Hydroxy-2-deoxyguanosine ameliorates high-fat diet-induced insulin resistance and adipocyte dysfunction in mice

Loading next page...
 
/lp/elsevier/8-hydroxy-2-deoxyguanosine-ameliorates-high-fat-diet-induced-insulin-9LJC9du60m
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Inc.
ISSN
0006-291x
D.O.I.
10.1016/j.bbrc.2017.07.132
Publisher site
See Article on Publisher Site

Abstract

8-Hydroxy-2-deoxyguanosine (8-OHdG), a marker of oxidative DNA damage, has been recently shown to exert anti-inflammatory effects through inhibition of Rac1. Inflammation in adipose tissue is a hallmark of obesity-induced insulin resistance, but the therapeutic potential of 8-OHdG in treatment of metabolic diseases has not been fully elucidated. The aim of this study was to examine the effect of exogenously administered 8-OHdG on adipose tissue and whole body metabolism. In cultured adipocytes, 8-OHdG inhibited adipogenesis and reversed TNFα-induced insulin resistance. In high-fat diet (HFD)-induced obese mice, 8-OHdG administration blunted the rise in body weight and fat mass. The decrease in adipose tissue mass by 8-OHdG was due to reduced adipocyte hypertrophy through induction of adipose triglyceride lipase and inhibition of fatty acid synthase expression. 8-OHdG also inhibited the infiltration of macrophages, resulting in amelioration of adipose tissue inflammation and adipokine dysregulation. Moreover, 8-OHdG administration ameliorated adipocyte as well as systemic insulin sensitivity. Both in vivo and in vitro results showed that 8-OHdG induces AMPK activation and reduces JNK activation in adipocytes. In conclusion, our results show that orally administered 8-OHdG protects against HFD-induced metabolic disorders by regulating adipocyte metabolism.

Journal

Biochemical and Biophysical Research CommunicationsElsevier

Published: Sep 30, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off