3D application of the coupled criterion to crack initiation prediction in epoxy/aluminum specimens under four point bending

3D application of the coupled criterion to crack initiation prediction in epoxy/aluminum... Until now, the coupled stress and energy criterion has mainly been used in 2D applications, but it is possible to extend it to a 3D case. Herein the crack initiation in epoxy/aluminum bimaterial specimens under four point bending is predicted through a 3D numerical application of the coupled criterion. The stress and the energy conditions are computed by means of 3D finite element modeling of both undamaged and cracked specimens. The crack initiates at the epoxy/aluminum interface, meshes of the cracked specimens take into account the crack topology which is determined using the interface normal stress isocontours. By indirect confrontation to experimental tests on aluminum/epoxy bimaterial specimens of different width, the proposed approach allows determining the interface strength and fracture energy. The blind application of the proposed method to a crack initiation in aluminum/epoxy/aluminum specimens of different epoxy layer thickness under four point bending leads to a reasonable agreement with experimental data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Solids and Structures Elsevier

3D application of the coupled criterion to crack initiation prediction in epoxy/aluminum specimens under four point bending

Loading next page...
 
/lp/elsevier/3d-application-of-the-coupled-criterion-to-crack-initiation-prediction-a5mX6zCFu2
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0020-7683
eISSN
1879-2146
D.O.I.
10.1016/j.ijsolstr.2018.03.005
Publisher site
See Article on Publisher Site

Abstract

Until now, the coupled stress and energy criterion has mainly been used in 2D applications, but it is possible to extend it to a 3D case. Herein the crack initiation in epoxy/aluminum bimaterial specimens under four point bending is predicted through a 3D numerical application of the coupled criterion. The stress and the energy conditions are computed by means of 3D finite element modeling of both undamaged and cracked specimens. The crack initiates at the epoxy/aluminum interface, meshes of the cracked specimens take into account the crack topology which is determined using the interface normal stress isocontours. By indirect confrontation to experimental tests on aluminum/epoxy bimaterial specimens of different width, the proposed approach allows determining the interface strength and fracture energy. The blind application of the proposed method to a crack initiation in aluminum/epoxy/aluminum specimens of different epoxy layer thickness under four point bending leads to a reasonable agreement with experimental data.

Journal

International Journal of Solids and StructuresElsevier

Published: Jun 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off