2500-year paleotempestological record of intense storms for the northern Gulf of Mexico, United States

2500-year paleotempestological record of intense storms for the northern Gulf of Mexico, United... The northern Gulf of Mexico has been devastated by recent intense storms. Camille (1969) and Katrina (2005) are two notable hurricanes that made landfall in nearly the same location in Mississippi. Fully understanding the risks and processes associated with hurricane impacts are impeded by a short and fragmented instrumental record, however. Paleotempestology has the potential to employ modern analogues from intense storms in this region to extend the hurricane record beyond pre-observational time. Existing empirically-based models can back-calculate surge heights over coastal systems as a function of transport distance, particle settling velocity, and gravitational acceleration. We collected sediment cores in a pond (3) and adjacent beach (1) in Hancock County, Mississippi. Grain-size, loss-on-ignition, and microfossil analyses were conducted on cores in the context of a Bayesian statistical age model using 137Cs and 14C dating. Using Hurricane Camille to calibrate the archive, similar coarse-grained deposits were identified, and inverse sediment transport models calculated paleosurge intensities similar in magnitude to Camille over the 2500-yr record. Our multi-millennial annual average landfall probability (0.48%) closely matches previously published studies from the Gulf of Mexico, indicating that intense hurricanes have not varied over these timescales. Over centennial timescales, active intervals occurred between 900 to 600 and 2200 to 1900yr BP, with relative quiescence between 1900 to 900yr BP. Comparisons with other published sites support the notion that southerly shifts in the Loop Current may be responsible for the decline in activity around 600yr BP. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Marine Geology Elsevier

2500-year paleotempestological record of intense storms for the northern Gulf of Mexico, United States

Loading next page...
 
/lp/elsevier/2500-year-paleotempestological-record-of-intense-storms-for-the-iH0t8PgQSt
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier B.V.
ISSN
0025-3227
eISSN
1872-6151
D.O.I.
10.1016/j.margeo.2017.09.009
Publisher site
See Article on Publisher Site

Abstract

The northern Gulf of Mexico has been devastated by recent intense storms. Camille (1969) and Katrina (2005) are two notable hurricanes that made landfall in nearly the same location in Mississippi. Fully understanding the risks and processes associated with hurricane impacts are impeded by a short and fragmented instrumental record, however. Paleotempestology has the potential to employ modern analogues from intense storms in this region to extend the hurricane record beyond pre-observational time. Existing empirically-based models can back-calculate surge heights over coastal systems as a function of transport distance, particle settling velocity, and gravitational acceleration. We collected sediment cores in a pond (3) and adjacent beach (1) in Hancock County, Mississippi. Grain-size, loss-on-ignition, and microfossil analyses were conducted on cores in the context of a Bayesian statistical age model using 137Cs and 14C dating. Using Hurricane Camille to calibrate the archive, similar coarse-grained deposits were identified, and inverse sediment transport models calculated paleosurge intensities similar in magnitude to Camille over the 2500-yr record. Our multi-millennial annual average landfall probability (0.48%) closely matches previously published studies from the Gulf of Mexico, indicating that intense hurricanes have not varied over these timescales. Over centennial timescales, active intervals occurred between 900 to 600 and 2200 to 1900yr BP, with relative quiescence between 1900 to 900yr BP. Comparisons with other published sites support the notion that southerly shifts in the Loop Current may be responsible for the decline in activity around 600yr BP.

Journal

Marine GeologyElsevier

Published: Feb 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off