TEMPORAL ENVIRONMENTAL VARIATION TIPS THE BALANCE BETWEEN FACILITATION AND INTERFERENCE IN DESERT PLANTS

TEMPORAL ENVIRONMENTAL VARIATION TIPS THE BALANCE BETWEEN FACILITATION AND INTERFERENCE IN DESERT... Recently, numerous studies have pointed to the importance of positive interactions in natural communities. There is now a broad consensus that the balance between negative and positive interactions should shift along environmental gradients, with competition prevailing under environmentally benign conditions and positive interactions dominating under harsh conditions. A commonly cited example of the importance of facilitation in harsh environments is the preference of desert annual plants for the areas under the canopy of shrubs. The recognition of apparently positive effects of desert shrubs on annuals, however, has been mostly based on density measurements, while fitness parameters of the understory plants have been ignored. Also, the temporal consistency of such effects has not been previously tested. Based on conceptual ideas about the balance between interference and facilitation, we predicted that positive effects of the shrubs on the understory should dominate in dry years, while in favorable years, negative effects would be stronger. We tested our hypothesis by measuring the direction and magnitude of the shrub effect on demographic responses of four desert annual plant species during four consecutive seasons of differing rainfall. The results contradicted our initial hypothesis. Depending on the species, the effect of the shrubs shifted from either negative to neutral or from neutral to positive with increasing annual rainfall. However, this trend was stronger for the effect of shrubs on plant reproductive success than on their densities. Our data highlight the importance of measuring fitness parameters in studies of plant––plant interactions. We suggest that the negative effects of shrubs on plant fitness were due to rainfall interception, while positive effects were related to increased nutrient availability beneath shrubs. However, the mechanisms by which the shrubs and annuals interact can only be resolved using an experimental approach. Our results contradict previous hypotheses about the relative importance of positive and negative interactions along environmental gradients. A simple conceptual model summarizing the proposed role of rainfall in determining the direction of shrub effects on their understory annuals is presented. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecology Ecological Society of America

TEMPORAL ENVIRONMENTAL VARIATION TIPS THE BALANCE BETWEEN FACILITATION AND INTERFERENCE IN DESERT PLANTS

Ecology, Volume 81 (6) – Jun 1, 2000

Loading next page...
 
/lp/ecological-society-of-america/temporal-environmental-variation-tips-the-balance-between-facilitation-uFJBWxOGUH
Publisher
Ecological Society of America
Copyright
Copyright © 2000 by the Ecological Society of America
Subject
Articles
ISSN
0012-9658
DOI
10.1890/0012-9658%282000%29081%5B1544:TEVTTB%5D2.0.CO%3B2
Publisher site
See Article on Publisher Site

Abstract

Recently, numerous studies have pointed to the importance of positive interactions in natural communities. There is now a broad consensus that the balance between negative and positive interactions should shift along environmental gradients, with competition prevailing under environmentally benign conditions and positive interactions dominating under harsh conditions. A commonly cited example of the importance of facilitation in harsh environments is the preference of desert annual plants for the areas under the canopy of shrubs. The recognition of apparently positive effects of desert shrubs on annuals, however, has been mostly based on density measurements, while fitness parameters of the understory plants have been ignored. Also, the temporal consistency of such effects has not been previously tested. Based on conceptual ideas about the balance between interference and facilitation, we predicted that positive effects of the shrubs on the understory should dominate in dry years, while in favorable years, negative effects would be stronger. We tested our hypothesis by measuring the direction and magnitude of the shrub effect on demographic responses of four desert annual plant species during four consecutive seasons of differing rainfall. The results contradicted our initial hypothesis. Depending on the species, the effect of the shrubs shifted from either negative to neutral or from neutral to positive with increasing annual rainfall. However, this trend was stronger for the effect of shrubs on plant reproductive success than on their densities. Our data highlight the importance of measuring fitness parameters in studies of plant––plant interactions. We suggest that the negative effects of shrubs on plant fitness were due to rainfall interception, while positive effects were related to increased nutrient availability beneath shrubs. However, the mechanisms by which the shrubs and annuals interact can only be resolved using an experimental approach. Our results contradict previous hypotheses about the relative importance of positive and negative interactions along environmental gradients. A simple conceptual model summarizing the proposed role of rainfall in determining the direction of shrub effects on their understory annuals is presented.

Journal

EcologyEcological Society of America

Published: Jun 1, 2000

Keywords: annual plants ; desert plant community ; environmental gradient ; facilitation ; interference ; plant––plant interactions ; rainfall ; shrubs ; temporal variation

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off