STAGES AND SPATIAL SCALES OF RECRUITMENT LIMITATION IN SOUTHERN APPALACHIAN FORESTS

STAGES AND SPATIAL SCALES OF RECRUITMENT LIMITATION IN SOUTHERN APPALACHIAN FORESTS Recruitment limitation of tree population dynamics is poorly understood, because fecundity and dispersal are difficult to characterize in closed stands. We present an approach that estimates seed production and dispersal under closed canopies and four limitations on recruitment: tree density and location, fecundity, seed dispersal, and establishment. Consistent estimates are obtained for 14 canopy species using 5 yr of census data from 100 seed traps and several thousand mapped trees and seedlings from five southern Appalachian forest stands that span gradients in elevation and moisture. Fecundity (seed production per square centimeter of basal area) ranged over four orders of magnitude, from 10 0 cm 2 basal area//yr ( Carya, Cornus, Nyssa, Quercus ) to >10 3 cm 2 //yr ( Betula ). Mean dispersal distance ranged from <5 m ( Cornus, Nyssa ) to >20 m ( Acer, Betula, Liriodendron, Tsuga ) and was positively correlated with fecundity. Species also differ in the degree of seed clumping at fine (1 m 2 ) spatial scales. Dispersal patterns can be classed in two groups based on dispersal vector: wind-dispersed taxa with high fecundities, long-distance dispersal, and low clumping vs. animal-dispersal taxa with low fecundities, short-distance dispersal, and a high degree of clumping. ““Colonization”” limitations caused by sizes and locations of parent trees, fecundity, and dispersal were quantified as the fraction of sites receiving seed relative to that expected under null models that assume dispersal is nonlocal (i.e., long-distance) and not clumped (i.e., Poisson). Difference among species in colonization levels ranged from those capable of saturating the forest floor with seed in most stands ( Acer, Betula, Liriodendron ) to ones that leave much of the forest floor without seed, despite presence of adults ( Carya, Cornus, Nyssa, Oxydendrum ). Seedling establishment is one of the strongest filters on recruitment in our study area. Taken together, our results indicate (1) that fecundity and dispersal can be resolved, even under a closed canopy, and (2) that recruitment of many species is limited by the density and location of source, dispersal patterns, or both. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecological Monographs Ecological Society of America

STAGES AND SPATIAL SCALES OF RECRUITMENT LIMITATION IN SOUTHERN APPALACHIAN FORESTS

Loading next page...
 
/lp/ecological-society-of-america/stages-and-spatial-scales-of-recruitment-limitation-in-southern-xhFIHWkMpD
Publisher
Ecological Society of America
Copyright
Copyright © 1998 by the Ecological Society of America
Subject
Articles
ISSN
0012-9615
DOI
10.1890/0012-9615%281998%29068%5B0213:SASSOR%5D2.0.CO%3B2
Publisher site
See Article on Publisher Site

Abstract

Recruitment limitation of tree population dynamics is poorly understood, because fecundity and dispersal are difficult to characterize in closed stands. We present an approach that estimates seed production and dispersal under closed canopies and four limitations on recruitment: tree density and location, fecundity, seed dispersal, and establishment. Consistent estimates are obtained for 14 canopy species using 5 yr of census data from 100 seed traps and several thousand mapped trees and seedlings from five southern Appalachian forest stands that span gradients in elevation and moisture. Fecundity (seed production per square centimeter of basal area) ranged over four orders of magnitude, from 10 0 cm 2 basal area//yr ( Carya, Cornus, Nyssa, Quercus ) to >10 3 cm 2 //yr ( Betula ). Mean dispersal distance ranged from <5 m ( Cornus, Nyssa ) to >20 m ( Acer, Betula, Liriodendron, Tsuga ) and was positively correlated with fecundity. Species also differ in the degree of seed clumping at fine (1 m 2 ) spatial scales. Dispersal patterns can be classed in two groups based on dispersal vector: wind-dispersed taxa with high fecundities, long-distance dispersal, and low clumping vs. animal-dispersal taxa with low fecundities, short-distance dispersal, and a high degree of clumping. ““Colonization”” limitations caused by sizes and locations of parent trees, fecundity, and dispersal were quantified as the fraction of sites receiving seed relative to that expected under null models that assume dispersal is nonlocal (i.e., long-distance) and not clumped (i.e., Poisson). Difference among species in colonization levels ranged from those capable of saturating the forest floor with seed in most stands ( Acer, Betula, Liriodendron ) to ones that leave much of the forest floor without seed, despite presence of adults ( Carya, Cornus, Nyssa, Oxydendrum ). Seedling establishment is one of the strongest filters on recruitment in our study area. Taken together, our results indicate (1) that fecundity and dispersal can be resolved, even under a closed canopy, and (2) that recruitment of many species is limited by the density and location of source, dispersal patterns, or both.

Journal

Ecological MonographsEcological Society of America

Published: May 1, 1998

Keywords: dispersal ; establishment ; fecundity ; forest dynamics ; negative binomial ; recruitment ; seed rain ; southern Appalachians

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off