SENSITIVITY OF SPECIES HABITAT-RELATIONSHIP MODEL PERFORMANCE TO FACTORS OF SCALE

SENSITIVITY OF SPECIES HABITAT-RELATIONSHIP MODEL PERFORMANCE TO FACTORS OF SCALE Researchers have come to different conclusions about the usefulness of habitat-relationship models for predicting species presence or absence. This difference frequently stems from a failure to recognize the effects of spatial scales at which the models are applied. We examined the effects of model complexity, spatial data resolution, and scale of application on the performance of bird habitat relationship (BHR) models on the Craig Mountain Wildlife Management Area and on the Idaho portion of the U.S. Forest Service's Northern Region. We constructed and tested BHR models for 60 bird species detected on the study areas. The models varied by three levels of complexity (amount of habitat information) and three spatial data resolutions (0.09 ha, 4 ha, 10 ha). We tested these models at two levels of analysis: the site level (a homogeneous area <0.5 ha) and cover-type level (an aggregation of many similar sites of a similar land-cover type), using correspondence between model predictions and species detections to calculate kappa coefficients of agreement. Model performance initially increased as models became more complex until a point was reached where omission errors increased at a rate greater than the rate at which commission errors were decreasing. Heterogeneity of the study areas appeared to influence the effect of model complexity. Changes in model complexity resulted in a greater decrease in commission error than increase in omission error. The effect of spatial data resolution on the performance of BHR models was influenced by the variability of the study area. BHR models performed better at cover-type levels of analysis than at the site level for both study areas. Correct-presence estimates (1 −− minus percentage omission error) decreased slightly as number of species detections increased on each study area. Correct-absence estimates (1 −− percentage commission error) increased as number of species detections increased on each study area. This suggests that a large number of detections may be necessary to achieve reliable estimates of model accuracy. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecological Applications Ecological Society of America

SENSITIVITY OF SPECIES HABITAT-RELATIONSHIP MODEL PERFORMANCE TO FACTORS OF SCALE

Loading next page...
 
/lp/ecological-society-of-america/sensitivity-of-species-habitat-relationship-model-performance-to-jEbesBGYRx
Publisher
Ecological Society of America
Copyright
Copyright © 2000 by the Ecological Society of America
Subject
Articles
ISSN
1051-0761
DOI
10.1890/1051-0761%282000%29010%5B1690:SOSHRM%5D2.0.CO%3B2
Publisher site
See Article on Publisher Site

Abstract

Researchers have come to different conclusions about the usefulness of habitat-relationship models for predicting species presence or absence. This difference frequently stems from a failure to recognize the effects of spatial scales at which the models are applied. We examined the effects of model complexity, spatial data resolution, and scale of application on the performance of bird habitat relationship (BHR) models on the Craig Mountain Wildlife Management Area and on the Idaho portion of the U.S. Forest Service's Northern Region. We constructed and tested BHR models for 60 bird species detected on the study areas. The models varied by three levels of complexity (amount of habitat information) and three spatial data resolutions (0.09 ha, 4 ha, 10 ha). We tested these models at two levels of analysis: the site level (a homogeneous area <0.5 ha) and cover-type level (an aggregation of many similar sites of a similar land-cover type), using correspondence between model predictions and species detections to calculate kappa coefficients of agreement. Model performance initially increased as models became more complex until a point was reached where omission errors increased at a rate greater than the rate at which commission errors were decreasing. Heterogeneity of the study areas appeared to influence the effect of model complexity. Changes in model complexity resulted in a greater decrease in commission error than increase in omission error. The effect of spatial data resolution on the performance of BHR models was influenced by the variability of the study area. BHR models performed better at cover-type levels of analysis than at the site level for both study areas. Correct-presence estimates (1 −− minus percentage omission error) decreased slightly as number of species detections increased on each study area. Correct-absence estimates (1 −− percentage commission error) increased as number of species detections increased on each study area. This suggests that a large number of detections may be necessary to achieve reliable estimates of model accuracy.

Journal

Ecological ApplicationsEcological Society of America

Published: Dec 1, 2000

Keywords: avian habitat ; bird counts ; GIS ; Idaho ; species habitat-relationship models

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off