Modeling Seed Dispersal Distances: Implications For Transgenic Pinus Taeda

Modeling Seed Dispersal Distances: Implications For Transgenic Pinus Taeda Predicting forest-tree seed dispersal across a landscape is useful for estimating gene flow from genetically engineered (GE) or transgenic trees. The question of biocontainment has yet to be resolved, although field-trial permits for transgenic forest trees are on the rise. Most current field trials in the United States occur in the Southeast where Pinus taeda L., an indigenous species, is the major timber commodity. Seed dispersal distances were simulated using a model where the major determinants were: (1) forest canopy height at seed release, (2) terminal velocity of the seeds, (3) absolute seed release, and (4) turbulent-flow statistics, all of which were measured or determined within a P. taeda plantation established from seeds collected from wild forest-tree stands at the Duke Forest near Durham, North Carolina, USA. In plantations aged 16 and 25 years our model results showed that most of the seeds fell within local-neighborhood dispersal distances, with estimates ranging from 0.05 to 0.14 km from the source. A fraction of seeds was uplifted above the forest canopy and moved via the long-distance dispersal (LDD) process as far as 11.9––33.7 km. Out of 10 5 seeds produced per hectare per year, roughly 440 seeds were predicted to be uplifted by vertical eddies above the forest canopy and transported via LDD. Of these, 70 seeds/ha traveled distances in excess of 1 km from the source, a distance too great to serve as a biocontainment zone. The probability of LDD occurrence of transgenic conifer seeds at distances exceeding 1 km approached 100%%. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecological Applications Ecological Society of America

Modeling Seed Dispersal Distances: Implications For Transgenic Pinus Taeda

Loading next page...
 
/lp/ecological-society-of-america/modeling-seed-dispersal-distances-implications-for-transgenic-pinus-TOsSuxixrn
Publisher
Ecological Society of America
Copyright
Copyright © 2006 by the Ecological Society of America
ISSN
1051-0761
DOI
10.1890/04-1901
Publisher site
See Article on Publisher Site

Abstract

Predicting forest-tree seed dispersal across a landscape is useful for estimating gene flow from genetically engineered (GE) or transgenic trees. The question of biocontainment has yet to be resolved, although field-trial permits for transgenic forest trees are on the rise. Most current field trials in the United States occur in the Southeast where Pinus taeda L., an indigenous species, is the major timber commodity. Seed dispersal distances were simulated using a model where the major determinants were: (1) forest canopy height at seed release, (2) terminal velocity of the seeds, (3) absolute seed release, and (4) turbulent-flow statistics, all of which were measured or determined within a P. taeda plantation established from seeds collected from wild forest-tree stands at the Duke Forest near Durham, North Carolina, USA. In plantations aged 16 and 25 years our model results showed that most of the seeds fell within local-neighborhood dispersal distances, with estimates ranging from 0.05 to 0.14 km from the source. A fraction of seeds was uplifted above the forest canopy and moved via the long-distance dispersal (LDD) process as far as 11.9––33.7 km. Out of 10 5 seeds produced per hectare per year, roughly 440 seeds were predicted to be uplifted by vertical eddies above the forest canopy and transported via LDD. Of these, 70 seeds/ha traveled distances in excess of 1 km from the source, a distance too great to serve as a biocontainment zone. The probability of LDD occurrence of transgenic conifer seeds at distances exceeding 1 km approached 100%%.

Journal

Ecological ApplicationsEcological Society of America

Published: Feb 1, 2006

Keywords: Duke Forest (North Carolina, USA) ; gene flow ; genetically modified conifers ; gymnosperms ; long-distance dispersal ; pine plantation ; Pinus taeda ; seed dispersal ; transgenic trees

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off