LIFE STAGE SIMULATION ANALYSIS: ESTIMATING VITAL-RATE EFFECTS ON POPULATION GROWTH FOR CONSERVATION

LIFE STAGE SIMULATION ANALYSIS: ESTIMATING VITAL-RATE EFFECTS ON POPULATION GROWTH FOR CONSERVATION We developed a simulation method, known as life-stage simulation analysis (LSA) to measure potential effects of uncertainty and variation in vital rates on population growth (λ) for purposes of species conservation planning. Under LSA, we specify plausible or hypothesized levels of uncertainty, variation, and covariation in vital rates for a given population. We use these data under resampling simulations to establish random combinations of vital rates for a large number of matrix replicates and finally summarize results from the matrix replicates to estimate potential effects of each vital rate on λ in a probability-based context. Estimates of potential effects are based on a variety of summary statistics, such as frequency of replicates having the same vital rate of highest elasticity, difference in elasticity values calculated under simulated conditions vs. elasticities calculated using mean invariant vital rates, percentage of replicates having positive population growth, and variation in λ explained by variation in each vital rate. To illustrate, we applied LSA to vital rates for two vertebrates: desert tortoise ( Gopherus agassizii ) and Greater Prairie Chicken ( Tympanuchus cupido ). Results for the prairie chicken indicated that a single vital rate consistently had greatest effect on population growth. Results for desert tortoise, however, suggested that a variety of life stages could have strong effects on population growth. Additional simulations for the Greater Prairie Chicken under a hypothetical conservation plan also demonstrated that a variety of vital rates could be manipulated to achieve desired population growth. To improve the reliability of inference, we recommend that potential effects of vital rates on λ be evaluated using a probability-based approach like LSA. LSA is an important complement to other methods that evaluate vital-rate effects on λ, including classical elasticity analysis, retrospective methods of variance decomposition, and simulation of the effects of environmental stochasticity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecology Ecological Society of America

LIFE STAGE SIMULATION ANALYSIS: ESTIMATING VITAL-RATE EFFECTS ON POPULATION GROWTH FOR CONSERVATION

Ecology, Volume 81 (3) – Mar 1, 2000

Loading next page...
 
/lp/ecological-society-of-america/life-stage-simulation-analysis-estimating-vital-rate-effects-on-Qwlid8juAT
Publisher
Ecological Society of America
Copyright
Copyright © 2000 by the Ecological Society of America
Subject
Special Feature
ISSN
0012-9658
D.O.I.
10.1890/0012-9658%282000%29081%5B0628:LSSAEV%5D2.0.CO%3B2
Publisher site
See Article on Publisher Site

Abstract

We developed a simulation method, known as life-stage simulation analysis (LSA) to measure potential effects of uncertainty and variation in vital rates on population growth (λ) for purposes of species conservation planning. Under LSA, we specify plausible or hypothesized levels of uncertainty, variation, and covariation in vital rates for a given population. We use these data under resampling simulations to establish random combinations of vital rates for a large number of matrix replicates and finally summarize results from the matrix replicates to estimate potential effects of each vital rate on λ in a probability-based context. Estimates of potential effects are based on a variety of summary statistics, such as frequency of replicates having the same vital rate of highest elasticity, difference in elasticity values calculated under simulated conditions vs. elasticities calculated using mean invariant vital rates, percentage of replicates having positive population growth, and variation in λ explained by variation in each vital rate. To illustrate, we applied LSA to vital rates for two vertebrates: desert tortoise ( Gopherus agassizii ) and Greater Prairie Chicken ( Tympanuchus cupido ). Results for the prairie chicken indicated that a single vital rate consistently had greatest effect on population growth. Results for desert tortoise, however, suggested that a variety of life stages could have strong effects on population growth. Additional simulations for the Greater Prairie Chicken under a hypothetical conservation plan also demonstrated that a variety of vital rates could be manipulated to achieve desired population growth. To improve the reliability of inference, we recommend that potential effects of vital rates on λ be evaluated using a probability-based approach like LSA. LSA is an important complement to other methods that evaluate vital-rate effects on λ, including classical elasticity analysis, retrospective methods of variance decomposition, and simulation of the effects of environmental stochasticity.

Journal

EcologyEcological Society of America

Published: Mar 1, 2000

Keywords: demography ; Gopherus agassizii (desert tortoise) ; elasticity ; finite rate of increase ; life-stage simulation analysis and importance ; matrix population models ; population growth ; sensitivity ; species conservation ; Tympanuchus cupido (Greater Prairie Chicken) ; variance and covariance ; vital rates

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off