LIFE HISTORIES AND ELASTICITY PATTERNS: PERTURBATION ANALYSIS FOR SPECIES WITH MINIMAL DEMOGRAPHIC DATA

LIFE HISTORIES AND ELASTICITY PATTERNS: PERTURBATION ANALYSIS FOR SPECIES WITH MINIMAL... Elasticity analysis is a useful tool in conservation biology. The relative impacts of proportional changes in fertility, juvenile survival, and adult survival on asymptotic population growth λ (where ln(λ) == r, the intrinsic rate of increase) are determined by vital rates (survival, growth, and fertility), which also define the life history characteristics of a species or population. Because we do not have good demographic information for most threatened populations, it is useful to categorize species according to their life history characteristics and related elasticity patterns. To do this, we compared the elasticity patterns generated by the life tables of 50 mammal populations. In age-classified models, the sum of the fertility elasticities and the survival elasticity for each juvenile age-class are equal; thus, age at maturity has a large impact on the contribution of juvenile survival to λ. Mammals that mature early and have large litters (“fast” mammals, such as rodents and smaller carnivores) also generally have short lifespans; these populations had relatively high fertility elasticities and lower adult survival elasticities. “Slow” mammals (those that mature late), having few offspring and higher adult survival rates (such as ungulates and marine mammals), had much lower fertility elasticities and high adult or juvenile survival elasticities. Although certain life history characteristics are phylogenetically constrained, we found that elasticity patterns within an order or family can be quite diverse, while similar elasticity patterns can occur in distantly related taxa. We extended our generalizations by developing a simple age-classified model parameterized by juvenile survival, mean adult survival, age at maturity, and mean annual fertility. The elasticity patterns of this model are determined by age at maturity, mean adult survival, and λ, and they compare favorably with the summed elasticities of full Leslie matrices. Thus, elasticity patterns can be predicted, even when complete life table information is unavailable. In addition to classifying species for management purposes, the results generated by this simplified model show how elasticity patterns may change if the vital rate information is uncertain. Elasticity analysis can be a qualitative guide for research and management, particularly for poorly known species, and a useful first step in a larger modeling effort to determine population viability. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecology Ecological Society of America

LIFE HISTORIES AND ELASTICITY PATTERNS: PERTURBATION ANALYSIS FOR SPECIES WITH MINIMAL DEMOGRAPHIC DATA

Loading next page...
 
/lp/ecological-society-of-america/life-histories-and-elasticity-patterns-perturbation-analysis-for-TkB12JIkOQ
Publisher site
See Article on Publisher Site

Abstract

Elasticity analysis is a useful tool in conservation biology. The relative impacts of proportional changes in fertility, juvenile survival, and adult survival on asymptotic population growth λ (where ln(λ) == r, the intrinsic rate of increase) are determined by vital rates (survival, growth, and fertility), which also define the life history characteristics of a species or population. Because we do not have good demographic information for most threatened populations, it is useful to categorize species according to their life history characteristics and related elasticity patterns. To do this, we compared the elasticity patterns generated by the life tables of 50 mammal populations. In age-classified models, the sum of the fertility elasticities and the survival elasticity for each juvenile age-class are equal; thus, age at maturity has a large impact on the contribution of juvenile survival to λ. Mammals that mature early and have large litters (“fast” mammals, such as rodents and smaller carnivores) also generally have short lifespans; these populations had relatively high fertility elasticities and lower adult survival elasticities. “Slow” mammals (those that mature late), having few offspring and higher adult survival rates (such as ungulates and marine mammals), had much lower fertility elasticities and high adult or juvenile survival elasticities. Although certain life history characteristics are phylogenetically constrained, we found that elasticity patterns within an order or family can be quite diverse, while similar elasticity patterns can occur in distantly related taxa. We extended our generalizations by developing a simple age-classified model parameterized by juvenile survival, mean adult survival, age at maturity, and mean annual fertility. The elasticity patterns of this model are determined by age at maturity, mean adult survival, and λ, and they compare favorably with the summed elasticities of full Leslie matrices. Thus, elasticity patterns can be predicted, even when complete life table information is unavailable. In addition to classifying species for management purposes, the results generated by this simplified model show how elasticity patterns may change if the vital rate information is uncertain. Elasticity analysis can be a qualitative guide for research and management, particularly for poorly known species, and a useful first step in a larger modeling effort to determine population viability.

Journal

EcologyEcological Society of America

Published: Mar 1, 2000

Keywords: age-based model ; conservation ; elasticity analysis ; life history ; life table ; mammal ; management ; matrix model ; population model

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off