FACILITATION AND COMPETITION ON GRADIENTS IN ALPINE PLANT COMMUNITIES

FACILITATION AND COMPETITION ON GRADIENTS IN ALPINE PLANT COMMUNITIES We conducted a neighbor removal experiment in natural alpine plant communities of the southwestern Alps to test for the relative importance of competitive and facilitative interactions along elevational and topographical gradients. The experimental sites were chosen to encompass most of the floristic diversity observed along gradients of elevation and topography, which are the two main ecological gradients associated with alpine plant communities in the western Alps. The effects of neighbor removal on the survival, aboveground biomass, and reproduction of five target species were tested at each of six experimental sites. Using biomass data, we calculated relative competitive index (RCI) and log response ratio (LRR) as measures of interaction strength and direction. We found highly significant shifts from strong competitive effects in low and sheltered sites to strong facilitative responses in high and exposed sites. When experimental results were integrated with gradient analyses, we found that the responses of particular alpine plant species to neighbor removal generally depended on the species' position on elevational and topographical gradients. When neighbors were removed from around target species at experimental sites that were lower in elevation than the distributional mean of the target species, biomass generally increased. When neighbors were removed from around target species at experimental sites that were higher in elevation than the distributional mean of the target species, biomass decreased. In other words, facilitation appeared to allow species from lower elevations to move up the gradient, but competition at low elevations appeared to restrict species from higher elevations from moving down the gradient. In high and exposed sites, experimental evidence for facilitation was coupled to small-scale spatial associations among species, but spatial disassociation was not coupled to experimental evidence for competition at any sites. We conclude that the distribution and abundance of many species in high-elevation communities of the western Alps appears to be enhanced by neighbors, and that species continua commonly observed along environmental gradients are the result of both negative and positive plant interactions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecology Ecological Society of America

FACILITATION AND COMPETITION ON GRADIENTS IN ALPINE PLANT COMMUNITIES

Ecology, Volume 82 (12) – Dec 1, 2001

Loading next page...
 
/lp/ecological-society-of-america/facilitation-and-competition-on-gradients-in-alpine-plant-communities-RIrbKQ0roj
Publisher
Ecological Society of America
Copyright
Copyright © 2001 by the Ecological Society of America
Subject
Regular Article
ISSN
0012-9658
DOI
10.1890/0012-9658%282001%29082%5B3295:FACOGI%5D2.0.CO%3B2
Publisher site
See Article on Publisher Site

Abstract

We conducted a neighbor removal experiment in natural alpine plant communities of the southwestern Alps to test for the relative importance of competitive and facilitative interactions along elevational and topographical gradients. The experimental sites were chosen to encompass most of the floristic diversity observed along gradients of elevation and topography, which are the two main ecological gradients associated with alpine plant communities in the western Alps. The effects of neighbor removal on the survival, aboveground biomass, and reproduction of five target species were tested at each of six experimental sites. Using biomass data, we calculated relative competitive index (RCI) and log response ratio (LRR) as measures of interaction strength and direction. We found highly significant shifts from strong competitive effects in low and sheltered sites to strong facilitative responses in high and exposed sites. When experimental results were integrated with gradient analyses, we found that the responses of particular alpine plant species to neighbor removal generally depended on the species' position on elevational and topographical gradients. When neighbors were removed from around target species at experimental sites that were lower in elevation than the distributional mean of the target species, biomass generally increased. When neighbors were removed from around target species at experimental sites that were higher in elevation than the distributional mean of the target species, biomass decreased. In other words, facilitation appeared to allow species from lower elevations to move up the gradient, but competition at low elevations appeared to restrict species from higher elevations from moving down the gradient. In high and exposed sites, experimental evidence for facilitation was coupled to small-scale spatial associations among species, but spatial disassociation was not coupled to experimental evidence for competition at any sites. We conclude that the distribution and abundance of many species in high-elevation communities of the western Alps appears to be enhanced by neighbors, and that species continua commonly observed along environmental gradients are the result of both negative and positive plant interactions.

Journal

EcologyEcological Society of America

Published: Dec 1, 2001

Keywords: alpine tundra ; competition ; elevation gradient ; facilitation ; log response ratio (LRR) ; niche theory ; ordination ; plant communities ; plant interactions ; relative competitive index (RCI) ; removal experiment ; topography gradient

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off