ESTIMATING POPULATION SPREAD: WHAT CAN WE FORECAST AND HOW WELL?

ESTIMATING POPULATION SPREAD: WHAT CAN WE FORECAST AND HOW WELL? Recent literature on plant population spread advocates quantification of long-distance dispersal (LDD). These estimates could provide insights into rates of migration in response to climate change and rates of alien invasions. LDD information is not available for parameterization of current models because it is hard to obtain. We combine a new stochastic model with a flexible framework that permits assimilation of evidence that might be derived from a range of sources. Results are consistent with the prediction of traditional diffusion that population spread has a finite asymptotic velocity. Unlike traditional diffusion, spread is not well described by the mean; it is erratic. In contrast with deterministic models, our results show that inherent uncertainty, rather than parameter sensitivity, thwarts informative forecasts of spread velocity. Analysis shows that, because LDD is inherently unpredictable, even full knowledge of LDD parameters might not provide informative estimates of velocity for populations characterized by LDD. Although predictive distributions are too broad to provide precise estimates of spread rate, they are valuable for comparing spread potential among species and for identifying potential for invasion. Using combinations of dispersal data and the estimates provided by dispersal biologists that derive from multiple sources, the model predicts spread rates that are much slower than those from traditional (deterministic) fat-tailed models and from simulation models of spread, but for different reasons. Deterministic fat-tailed models overestimate spread rate, because they assume that fractions of individuals can rapidly occupy distant sites. Stochastic models recognize that distant colonization is limited to discrete individuals. Stochastic simulations of plant migration overestimate migration of trees, because they typically assume values of R 0 that are too large. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecology Ecological Society of America

ESTIMATING POPULATION SPREAD: WHAT CAN WE FORECAST AND HOW WELL?

Loading next page...
 
/lp/ecological-society-of-america/estimating-population-spread-what-can-we-forecast-and-how-well-ZS0VhW98Fb
Publisher
Ecological Society of America
Copyright
Copyright © 2003 by the Ecological Society of America
Subject
Special Feature —— Long-Distance Dispersal
ISSN
0012-9658
D.O.I.
10.1890/01-0618
Publisher site
See Article on Publisher Site

Abstract

Recent literature on plant population spread advocates quantification of long-distance dispersal (LDD). These estimates could provide insights into rates of migration in response to climate change and rates of alien invasions. LDD information is not available for parameterization of current models because it is hard to obtain. We combine a new stochastic model with a flexible framework that permits assimilation of evidence that might be derived from a range of sources. Results are consistent with the prediction of traditional diffusion that population spread has a finite asymptotic velocity. Unlike traditional diffusion, spread is not well described by the mean; it is erratic. In contrast with deterministic models, our results show that inherent uncertainty, rather than parameter sensitivity, thwarts informative forecasts of spread velocity. Analysis shows that, because LDD is inherently unpredictable, even full knowledge of LDD parameters might not provide informative estimates of velocity for populations characterized by LDD. Although predictive distributions are too broad to provide precise estimates of spread rate, they are valuable for comparing spread potential among species and for identifying potential for invasion. Using combinations of dispersal data and the estimates provided by dispersal biologists that derive from multiple sources, the model predicts spread rates that are much slower than those from traditional (deterministic) fat-tailed models and from simulation models of spread, but for different reasons. Deterministic fat-tailed models overestimate spread rate, because they assume that fractions of individuals can rapidly occupy distant sites. Stochastic models recognize that distant colonization is limited to discrete individuals. Stochastic simulations of plant migration overestimate migration of trees, because they typically assume values of R 0 that are too large.

Journal

EcologyEcological Society of America

Published: Aug 1, 2003

Keywords: Bayes ; climate change ; dispersal ; invasion ; migration ; population spread

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off