ESTIMATING COMMUNITY STABILITY AND ECOLOGICAL INTERACTIONS FROM TIME-SERIES DATA

ESTIMATING COMMUNITY STABILITY AND ECOLOGICAL INTERACTIONS FROM TIME-SERIES DATA Natural ecological communities are continuously buffeted by a varying environment, often making it difficult to measure the stability of communities using concepts requiring the existence of an equilibrium point. Instead of an equilibrium point, the equilibrial state of communities subject to environmental stochasticity is a stationary distribution, which is characterized by means, variances, and other statistical moments. Here, we derive three properties of stochastic multispecies communities that measure different characteristics associated with community stability. These properties can be estimated from multispecies time-series data using first-order multivariate autoregressive (MAR(1)) models. We demonstrate how to estimate the parameters of MAR(1) models and obtain confidence intervals for both parameters and the measures of stability. We also address the problem of estimation when there is observation (measurement) error. To illustrate these methods, we compare the stability of the planktonic communities in three lakes in which nutrient loading and planktivorous fish abundance were experimentally manipulated. MAR(1) models and the statistical methods we present can be used to identify dynamically important interactions between species and to test hypotheses about stability and other dynamical properties of naturally varying ecological communities. Thus, they can be used to integrate theoretical and empirical studies of community dynamics. Corresponding Editor: N. J. Gotelli. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecological Monographs Ecological Society of America

ESTIMATING COMMUNITY STABILITY AND ECOLOGICAL INTERACTIONS FROM TIME-SERIES DATA

Loading next page...
 
/lp/ecological-society-of-america/estimating-community-stability-and-ecological-interactions-from-time-iC97ipJ1nf
Publisher
Ecological Society of America
Copyright
Copyright © 2003 by the Ecological Society of America
Subject
Regular Article
ISSN
0012-9615
D.O.I.
10.1890/0012-9615%282003%29073%5B0301:ECSAEI%5D2.0.CO%3B2
Publisher site
See Article on Publisher Site

Abstract

Natural ecological communities are continuously buffeted by a varying environment, often making it difficult to measure the stability of communities using concepts requiring the existence of an equilibrium point. Instead of an equilibrium point, the equilibrial state of communities subject to environmental stochasticity is a stationary distribution, which is characterized by means, variances, and other statistical moments. Here, we derive three properties of stochastic multispecies communities that measure different characteristics associated with community stability. These properties can be estimated from multispecies time-series data using first-order multivariate autoregressive (MAR(1)) models. We demonstrate how to estimate the parameters of MAR(1) models and obtain confidence intervals for both parameters and the measures of stability. We also address the problem of estimation when there is observation (measurement) error. To illustrate these methods, we compare the stability of the planktonic communities in three lakes in which nutrient loading and planktivorous fish abundance were experimentally manipulated. MAR(1) models and the statistical methods we present can be used to identify dynamically important interactions between species and to test hypotheses about stability and other dynamical properties of naturally varying ecological communities. Thus, they can be used to integrate theoretical and empirical studies of community dynamics. Corresponding Editor: N. J. Gotelli.

Journal

Ecological MonographsEcological Society of America

Published: May 1, 2003

Keywords: community matrix ; community stability ; multivariate autoregressive process ; reactivity ; resilience ; stationary distribution ; stochastic population model ; time-series analysis ; vector autoregressive process

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off