Decomposing environmental, spatial, and spatiotemporal components of species distributions

Decomposing environmental, spatial, and spatiotemporal components of species distributions Species distribution models are an important tool to predict the impact of global change on species distributional ranges and community assemblages. Although considerable progress has been made in the statistical modeling during the last decade, many approaches still ignore important features of species distributions, such as nonlinearity and interactions between predictors, spatial autocorrelation, and nonstationarity, or at most incorporate only some of these features. Ecologists, however, require a modeling framework that simultaneously addresses all these features flexibly and consistently. Here we describe such an approach that allows the estimation of the global effects of environmental variables in addition to local components dealing with spatiotemporal autocorrelation as well as nonstationary effects. The local components can be used to infer unknown spatiotemporal processes; the global component describes how the species is influenced by the environment and can be used for predictions, allowing the fitting of many well-known regression relationships, ranging from simple linear models to complex decision trees or from additive models to models inspired by machine learning procedures. The reliability of spatiotemporal predictions can be qualitatively predicted by separately evaluating the importance of local and global effects. We demonstrate the potential of the new approach by modeling the breeding distribution of the Red Kite ( Milvus milvus ), a bird of prey occurring predominantly in Western Europe, based on presence/absence data from two mapping campaigns using grids of 40 km 2 in Bavaria. The global component of the model selected seven environmental variables extracted from the CORINE and WorldClim databases to predict Red Kite breeding. The effect of altitude was found to be nonstationary in space, and in addition, the data were spatially autocorrelated, which suggests that a species distribution model that does not allow for spatially varying effects and spatial autocorrelation would have ignored important processes determining the distribution of Red Kite breeding across Bavaria. Thus, predictions from standard species distribution models that do not allow for real-world complexities may be considerably erroneous. Our analysis of Red Kite breeding exemplifies the potential of the innovative approach for species distribution models. The method is also applicable to modeling count data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecological Monographs Ecological Society of America

Decomposing environmental, spatial, and spatiotemporal components of species distributions

Loading next page...
 
/lp/ecological-society-of-america/decomposing-environmental-spatial-and-spatiotemporal-components-of-cWrjz0DLIJ
Publisher
Ecological Society of America
Copyright
Copyright © 2011 by the Ecological Society of America
Subject
Articles
ISSN
0012-9615
DOI
10.1890/10-0602.1
Publisher site
See Article on Publisher Site

Abstract

Species distribution models are an important tool to predict the impact of global change on species distributional ranges and community assemblages. Although considerable progress has been made in the statistical modeling during the last decade, many approaches still ignore important features of species distributions, such as nonlinearity and interactions between predictors, spatial autocorrelation, and nonstationarity, or at most incorporate only some of these features. Ecologists, however, require a modeling framework that simultaneously addresses all these features flexibly and consistently. Here we describe such an approach that allows the estimation of the global effects of environmental variables in addition to local components dealing with spatiotemporal autocorrelation as well as nonstationary effects. The local components can be used to infer unknown spatiotemporal processes; the global component describes how the species is influenced by the environment and can be used for predictions, allowing the fitting of many well-known regression relationships, ranging from simple linear models to complex decision trees or from additive models to models inspired by machine learning procedures. The reliability of spatiotemporal predictions can be qualitatively predicted by separately evaluating the importance of local and global effects. We demonstrate the potential of the new approach by modeling the breeding distribution of the Red Kite ( Milvus milvus ), a bird of prey occurring predominantly in Western Europe, based on presence/absence data from two mapping campaigns using grids of 40 km 2 in Bavaria. The global component of the model selected seven environmental variables extracted from the CORINE and WorldClim databases to predict Red Kite breeding. The effect of altitude was found to be nonstationary in space, and in addition, the data were spatially autocorrelated, which suggests that a species distribution model that does not allow for spatially varying effects and spatial autocorrelation would have ignored important processes determining the distribution of Red Kite breeding across Bavaria. Thus, predictions from standard species distribution models that do not allow for real-world complexities may be considerably erroneous. Our analysis of Red Kite breeding exemplifies the potential of the innovative approach for species distribution models. The method is also applicable to modeling count data.

Journal

Ecological MonographsEcological Society of America

Published: May 1, 2011

Keywords: Key words : boosting ; model selection ; nonstationarity ; spatial autocorrelation ; species distribution model ; structured additive model ; variable selection .

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off