Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Evidence for physiological coupling of insulin-mediated glucose metabolism and limb blood flow

Evidence for physiological coupling of insulin-mediated glucose metabolism and limb blood flow Abstract We hypothesized that the vasodilation observed during insulin stimulation is closely coupled to the rate of glucose metabolism. Lean (L, n = 13), obese nondiabetic (OB, n = 13), and obese type 2 diabetic subjects (Type 2 DM, n = 16) were studied. Leg blood flow (LBF) was examined under conditions of euglycemic hyperinsulinemia (EH) and hyperglycemic hyperinsulinemia (HH), which produced a steady-state whole body glucose disposal rate (GDR) of ∼2,000 μmol · m −2 · min −1 . At this GDR, under both conditions, subjects across the range of insulin sensitivity exhibited equivalent LBF (l/min EH: L, 0.42 ± 0.03; OB, 0.43 ± 0.03; Type 2 DM, 0.38 ± 0.07; P = 0.72 by ANOVA. HH: L, 0.44 ± 0.04; OB, 0.39 ± 0.05; Type 2 DM, 0.41 ± 0.04; P = 0.71). The continuous relationship between LBF and GDR did not differ across subject groups slope × 10 −5 l/(μmol · m −2 · min −1 ) by ANOVA. EH: L, 8.6; OB, 9.2; Type 2 DM, 7.9; P = 0.91. HH: L, 4.2; OB, 2.5; Type 2 DM, 4.1; P = 0.77, although this relationship did differ between the EH and HH conditions ( P = 0.001). These findings support a physiological coupling of LBF and insulin-mediated glucose metabolism. The mechanism(s) linking substrate delivery and metabolism appears to be intact in insulin-resistant states. Footnotes Address for reprint requests and other correspondence: K. Mather, Div. of Endocrinology and Metabolism, Indiana Univ. School of Medicine, CL459, 541 N. Clinical Dr., Indianapolis, IN 46202 (E-mail: kmather@iupui.edu ). The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “ advertisement ” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. Copyright © 2000 the American Physiological Society http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png AJP - Endocrinology and Metabolism The American Physiological Society

Evidence for physiological coupling of insulin-mediated glucose metabolism and limb blood flow

Loading next page...
 
/lp/the-american-physiological-society/evidence-for-physiological-coupling-of-insulin-mediated-glucose-zG6Ja5oK80

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
The American Physiological Society
Copyright
Copyright © 2011 the American Physiological Society
ISSN
0193-1849
eISSN
1522-1555
Publisher site
See Article on Publisher Site

Abstract

Abstract We hypothesized that the vasodilation observed during insulin stimulation is closely coupled to the rate of glucose metabolism. Lean (L, n = 13), obese nondiabetic (OB, n = 13), and obese type 2 diabetic subjects (Type 2 DM, n = 16) were studied. Leg blood flow (LBF) was examined under conditions of euglycemic hyperinsulinemia (EH) and hyperglycemic hyperinsulinemia (HH), which produced a steady-state whole body glucose disposal rate (GDR) of ∼2,000 μmol · m −2 · min −1 . At this GDR, under both conditions, subjects across the range of insulin sensitivity exhibited equivalent LBF (l/min EH: L, 0.42 ± 0.03; OB, 0.43 ± 0.03; Type 2 DM, 0.38 ± 0.07; P = 0.72 by ANOVA. HH: L, 0.44 ± 0.04; OB, 0.39 ± 0.05; Type 2 DM, 0.41 ± 0.04; P = 0.71). The continuous relationship between LBF and GDR did not differ across subject groups slope × 10 −5 l/(μmol · m −2 · min −1 ) by ANOVA. EH: L, 8.6; OB, 9.2; Type 2 DM, 7.9; P = 0.91. HH: L, 4.2; OB, 2.5; Type 2 DM, 4.1; P = 0.77, although this relationship did differ between the EH and HH conditions ( P = 0.001). These findings support a physiological coupling of LBF and insulin-mediated glucose metabolism. The mechanism(s) linking substrate delivery and metabolism appears to be intact in insulin-resistant states. Footnotes Address for reprint requests and other correspondence: K. Mather, Div. of Endocrinology and Metabolism, Indiana Univ. School of Medicine, CL459, 541 N. Clinical Dr., Indianapolis, IN 46202 (E-mail: kmather@iupui.edu ). The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “ advertisement ” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. Copyright © 2000 the American Physiological Society

Journal

AJP - Endocrinology and MetabolismThe American Physiological Society

Published: Dec 1, 2000

There are no references for this article.