Access the full text.
Sign up today, get DeepDyve free for 14 days.
(HuB.JiangZ.WangW.QiuY.ZhangZ.LiuY.. (2019). Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants. Nat. Plants 5, 401–413. 10.1038/s41477-019-0384-1, PMID: 30911122)
HuB.JiangZ.WangW.QiuY.ZhangZ.LiuY.. (2019). Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants. Nat. Plants 5, 401–413. 10.1038/s41477-019-0384-1, PMID: 30911122HuB.JiangZ.WangW.QiuY.ZhangZ.LiuY.. (2019). Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants. Nat. Plants 5, 401–413. 10.1038/s41477-019-0384-1, PMID: 30911122, HuB.JiangZ.WangW.QiuY.ZhangZ.LiuY.. (2019). Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants. Nat. Plants 5, 401–413. 10.1038/s41477-019-0384-1, PMID: 30911122
Suresh Kumar, V. Chinnusamy, T. Mohapatra (2018)
Epigenetics of Modified DNA Bases: 5-Methylcytosine and BeyondFrontiers in Genetics, 9
A. Lešková, R. Giehl, A. Hartmann, A. Fargašová, N. Wirén (2017)
Heavy Metals Induce Iron Deficiency Responses at Different Hierarchic and Regulatory Levels1[OPEN]Plant Physiology, 174
A. Gojon, P. Nacry, J. Davidian (2009)
Root uptake regulation: a central process for NPS homeostasis in plants.Current opinion in plant biology, 12 3
(PueyoJ. J.QuiñonesM. A.Coba de la PeñaT.FedorovaE. E.LucasM. M. (2021). Nitrogen and phosphorus interplay in lupin root nodules and cluster roots. Front. Plant Sci. 12:644218. 10.3389/fpls.2021.644218, PMID: 33747024)
PueyoJ. J.QuiñonesM. A.Coba de la PeñaT.FedorovaE. E.LucasM. M. (2021). Nitrogen and phosphorus interplay in lupin root nodules and cluster roots. Front. Plant Sci. 12:644218. 10.3389/fpls.2021.644218, PMID: 33747024PueyoJ. J.QuiñonesM. A.Coba de la PeñaT.FedorovaE. E.LucasM. M. (2021). Nitrogen and phosphorus interplay in lupin root nodules and cluster roots. Front. Plant Sci. 12:644218. 10.3389/fpls.2021.644218, PMID: 33747024, PueyoJ. J.QuiñonesM. A.Coba de la PeñaT.FedorovaE. E.LucasM. M. (2021). Nitrogen and phosphorus interplay in lupin root nodules and cluster roots. Front. Plant Sci. 12:644218. 10.3389/fpls.2021.644218, PMID: 33747024
A. Gniazdowska, A. Rychter (2000)
Nitrate uptake by bean (Phaseolus vulgaris L.) roots under phosphate deficiencyPlant and Soil, 226
Suresh Kumar, T. Mohapatra (2021)
Deciphering Epitranscriptome: Modification of mRNA Bases Provides a New Perspective for Post-transcriptional Regulation of Gene ExpressionFrontiers in Cell and Developmental Biology, 9
Zhe Zhang, S. Gale, Jihong Li, G. Fischer, M. Ren, Xi-Qiang Song (2019)
Pollen-mediated gene flow ensures connectivity among spatially discrete sub-populations of Phalaenopsis pulcherrima, a tropical food-deceptive orchidBMC Plant Biology, 19
(ThibaudM. C.ArrighiJ. F.BayleV.ChiarenzaS.CreffA.BustosR.. (2010). Dissection of local and systemic transcriptional responses to phosphate starvation in Arabidopsis. Plant J. 64, 775–789. 10.1111/j.1365-313X.2010.04375.x, PMID: 21105925)
ThibaudM. C.ArrighiJ. F.BayleV.ChiarenzaS.CreffA.BustosR.. (2010). Dissection of local and systemic transcriptional responses to phosphate starvation in Arabidopsis. Plant J. 64, 775–789. 10.1111/j.1365-313X.2010.04375.x, PMID: 21105925ThibaudM. C.ArrighiJ. F.BayleV.ChiarenzaS.CreffA.BustosR.. (2010). Dissection of local and systemic transcriptional responses to phosphate starvation in Arabidopsis. Plant J. 64, 775–789. 10.1111/j.1365-313X.2010.04375.x, PMID: 21105925, ThibaudM. C.ArrighiJ. F.BayleV.ChiarenzaS.CreffA.BustosR.. (2010). Dissection of local and systemic transcriptional responses to phosphate starvation in Arabidopsis. Plant J. 64, 775–789. 10.1111/j.1365-313X.2010.04375.x, PMID: 21105925
(GüsewellS. (2004). N:P ratios in terrestrial plants: variation and functional significance. New Phytol. 164, 243–266. 10.1111/j.1469-8137.2004.01192.x, PMID: 33873556)
GüsewellS. (2004). N:P ratios in terrestrial plants: variation and functional significance. New Phytol. 164, 243–266. 10.1111/j.1469-8137.2004.01192.x, PMID: 33873556GüsewellS. (2004). N:P ratios in terrestrial plants: variation and functional significance. New Phytol. 164, 243–266. 10.1111/j.1469-8137.2004.01192.x, PMID: 33873556, GüsewellS. (2004). N:P ratios in terrestrial plants: variation and functional significance. New Phytol. 164, 243–266. 10.1111/j.1469-8137.2004.01192.x, PMID: 33873556
(GniazdowskaA.RychterA. M. (2000). Nitrate uptake by bean (Phaseolus vulgaris L.) roots under phosphate deficiency. Plant Soil 226, 79–85. 10.1023/A:1026463307043)
GniazdowskaA.RychterA. M. (2000). Nitrate uptake by bean (Phaseolus vulgaris L.) roots under phosphate deficiency. Plant Soil 226, 79–85. 10.1023/A:1026463307043GniazdowskaA.RychterA. M. (2000). Nitrate uptake by bean (Phaseolus vulgaris L.) roots under phosphate deficiency. Plant Soil 226, 79–85. 10.1023/A:1026463307043, GniazdowskaA.RychterA. M. (2000). Nitrate uptake by bean (Phaseolus vulgaris L.) roots under phosphate deficiency. Plant Soil 226, 79–85. 10.1023/A:1026463307043
M. Thibaud, J. Arrighi, V. Bayle, Serge Chiarenza, A. Creff, Regla Bustos, J. Paz-Ares, Y. Poirier, L. Nussaume (2010)
Dissection of local and systemic transcriptional responses to phosphate starvation in Arabidopsis.The Plant journal : for cell and molecular biology, 64 5
(BarberonM.ZelaznyE.RobertS.ConejeroG.CurieC.FrimlJ.. (2011). Monoubiquitin-dependent endocytosis of the iron-regulated transporter1 (IRT1) transporter controls iron uptake in plants. Proc. Natl. Acad. Sci. U. S. A. 108, 450–458. 10.1073/pnas.1100659108, PMID: 21628566)
BarberonM.ZelaznyE.RobertS.ConejeroG.CurieC.FrimlJ.. (2011). Monoubiquitin-dependent endocytosis of the iron-regulated transporter1 (IRT1) transporter controls iron uptake in plants. Proc. Natl. Acad. Sci. U. S. A. 108, 450–458. 10.1073/pnas.1100659108, PMID: 21628566BarberonM.ZelaznyE.RobertS.ConejeroG.CurieC.FrimlJ.. (2011). Monoubiquitin-dependent endocytosis of the iron-regulated transporter1 (IRT1) transporter controls iron uptake in plants. Proc. Natl. Acad. Sci. U. S. A. 108, 450–458. 10.1073/pnas.1100659108, PMID: 21628566, BarberonM.ZelaznyE.RobertS.ConejeroG.CurieC.FrimlJ.. (2011). Monoubiquitin-dependent endocytosis of the iron-regulated transporter1 (IRT1) transporter controls iron uptake in plants. Proc. Natl. Acad. Sci. U. S. A. 108, 450–458. 10.1073/pnas.1100659108, PMID: 21628566
K. Sugimoto, N. Sato, M. Tsuzuki (2007)
Utilization of a chloroplast membrane sulfolipid as a major internal sulfur source for protein synthesis in the early phase of sulfur starvation in Chlamydomonas reinhardtiiFEBS Letters, 581
J. Coleman (1998)
Zinc enzymes.Current opinion in chemical biology, 2 2
(KumarS. (2020). Abiotic stresses and their effects on plant growth, yield and nutritional quality of agricultural produce. Int. J. Food Sci. Agric. 4, 367–378. 10.26855/ijfsa.2020.12.002)
KumarS. (2020). Abiotic stresses and their effects on plant growth, yield and nutritional quality of agricultural produce. Int. J. Food Sci. Agric. 4, 367–378. 10.26855/ijfsa.2020.12.002KumarS. (2020). Abiotic stresses and their effects on plant growth, yield and nutritional quality of agricultural produce. Int. J. Food Sci. Agric. 4, 367–378. 10.26855/ijfsa.2020.12.002, KumarS. (2020). Abiotic stresses and their effects on plant growth, yield and nutritional quality of agricultural produce. Int. J. Food Sci. Agric. 4, 367–378. 10.26855/ijfsa.2020.12.002
(ChotchutimaS.TudsriS.KangvansaicholK.SripichittP. (2016). Effects of sulfur and phosphorus application on the growth, biomass yield and fuel properties of leucaena (Leucaena leucocephala (Lam.) de Wit.) as bioenergy crop on sandy infertile soil. Resources 50, 54–59. 10.1016/j.anres.2015.09.002)
ChotchutimaS.TudsriS.KangvansaicholK.SripichittP. (2016). Effects of sulfur and phosphorus application on the growth, biomass yield and fuel properties of leucaena (Leucaena leucocephala (Lam.) de Wit.) as bioenergy crop on sandy infertile soil. Resources 50, 54–59. 10.1016/j.anres.2015.09.002ChotchutimaS.TudsriS.KangvansaicholK.SripichittP. (2016). Effects of sulfur and phosphorus application on the growth, biomass yield and fuel properties of leucaena (Leucaena leucocephala (Lam.) de Wit.) as bioenergy crop on sandy infertile soil. Resources 50, 54–59. 10.1016/j.anres.2015.09.002, ChotchutimaS.TudsriS.KangvansaicholK.SripichittP. (2016). Effects of sulfur and phosphorus application on the growth, biomass yield and fuel properties of leucaena (Leucaena leucocephala (Lam.) de Wit.) as bioenergy crop on sandy infertile soil. Resources 50, 54–59. 10.1016/j.anres.2015.09.002
Wei-Yi Lin, Teng-Kuei Huang, T. Chiou (2013)
NITROGEN LIMITATION ADAPTATION, a Target of MicroRNA827, Mediates Degradation of Plasma Membrane–Localized Phosphate Transporters to Maintain Phosphate Homeostasis in Arabidopsis[W][OPEN]Plant Cell, 25
(GruberB. D.GiehlR. F.FriedelS.von WirénN. (2013). Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol. 163, 161–179. 10.1104/pp.113.218453, PMID: 23852440)
GruberB. D.GiehlR. F.FriedelS.von WirénN. (2013). Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol. 163, 161–179. 10.1104/pp.113.218453, PMID: 23852440GruberB. D.GiehlR. F.FriedelS.von WirénN. (2013). Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol. 163, 161–179. 10.1104/pp.113.218453, PMID: 23852440, GruberB. D.GiehlR. F.FriedelS.von WirénN. (2013). Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol. 163, 161–179. 10.1104/pp.113.218453, PMID: 23852440
(SaenchaiC.BouainN.KiskoM.PromC.DoumasP.RouachedH. (2016). The involvement of OsPHO1;1 in the regulation of iron transport through integration of phosphate and zinc deficiency signaling. Front. Plant Sci. 7:396. 10.3389/fpls.2016.00396, PMID: 27092147)
SaenchaiC.BouainN.KiskoM.PromC.DoumasP.RouachedH. (2016). The involvement of OsPHO1;1 in the regulation of iron transport through integration of phosphate and zinc deficiency signaling. Front. Plant Sci. 7:396. 10.3389/fpls.2016.00396, PMID: 27092147SaenchaiC.BouainN.KiskoM.PromC.DoumasP.RouachedH. (2016). The involvement of OsPHO1;1 in the regulation of iron transport through integration of phosphate and zinc deficiency signaling. Front. Plant Sci. 7:396. 10.3389/fpls.2016.00396, PMID: 27092147, SaenchaiC.BouainN.KiskoM.PromC.DoumasP.RouachedH. (2016). The involvement of OsPHO1;1 in the regulation of iron transport through integration of phosphate and zinc deficiency signaling. Front. Plant Sci. 7:396. 10.3389/fpls.2016.00396, PMID: 27092147
(KroukG.RuffelS.GutiérrezR. A.GojonA.CrawfordN. M.CoruzziG. M.. (2011). A framework integrating plant growth with hormones and nutrients. Trends Plant Sci. 16, 178–182. 10.1016/j.tplants.2011.02.004, PMID: 21393048)
KroukG.RuffelS.GutiérrezR. A.GojonA.CrawfordN. M.CoruzziG. M.. (2011). A framework integrating plant growth with hormones and nutrients. Trends Plant Sci. 16, 178–182. 10.1016/j.tplants.2011.02.004, PMID: 21393048KroukG.RuffelS.GutiérrezR. A.GojonA.CrawfordN. M.CoruzziG. M.. (2011). A framework integrating plant growth with hormones and nutrients. Trends Plant Sci. 16, 178–182. 10.1016/j.tplants.2011.02.004, PMID: 21393048, KroukG.RuffelS.GutiérrezR. A.GojonA.CrawfordN. M.CoruzziG. M.. (2011). A framework integrating plant growth with hormones and nutrients. Trends Plant Sci. 16, 178–182. 10.1016/j.tplants.2011.02.004, PMID: 21393048
(ColomboC.PalumboG.HeJ. Z.PintonR.CescoS. (2014). Review on iron availability in soil: interaction of Fe minerals, plants, and microbes. J. Soils Sediments 14, 538–548. 10.1007/s11368-013-0814-z)
ColomboC.PalumboG.HeJ. Z.PintonR.CescoS. (2014). Review on iron availability in soil: interaction of Fe minerals, plants, and microbes. J. Soils Sediments 14, 538–548. 10.1007/s11368-013-0814-zColomboC.PalumboG.HeJ. Z.PintonR.CescoS. (2014). Review on iron availability in soil: interaction of Fe minerals, plants, and microbes. J. Soils Sediments 14, 538–548. 10.1007/s11368-013-0814-z, ColomboC.PalumboG.HeJ. Z.PintonR.CescoS. (2014). Review on iron availability in soil: interaction of Fe minerals, plants, and microbes. J. Soils Sediments 14, 538–548. 10.1007/s11368-013-0814-z
Muhammad Islam, S. Mohsan, Safdar Ali (2012)
EFFECT OF DIFFERENT PHOSPHORUS AND SULFUR LEVELS ON NITROGEN FIXATION AND UPTAKE BY CHICKPEA (Cicer arietinum L.)Agrociencia, 46
T. Sresty, K. Rao (1999)
Ultrastructural alterations in response to zinc and nickel stress in the root cells of pigeonpeaEnvironmental and Experimental Botany, 41
Kranthi Varala, Amy Marshall-Colón, Jacopo Cirrone, Matthew Brooks, Angelo Pasquino, S. Léran, Shipra Mittal, Tara Rock, Molly Edwards, Grace Kim, S. Ruffel, W. Mccombie, D. Shasha, G. Coruzzi (2018)
Temporal transcriptional logic of dynamic regulatory networks underlying nitrogen signaling and use in plantsProceedings of the National Academy of Sciences of the United States of America, 115
(KantS.PengM.RothsteinS. J. (2011). Genetic regulation by NLA and microRNA827 for maintaining nitrate-dependent phosphate homeostasis in Arabidopsis. PLoS Genet. 7:1002021. 10.1371/journal.pgen.1002021, PMID: 21455488)
KantS.PengM.RothsteinS. J. (2011). Genetic regulation by NLA and microRNA827 for maintaining nitrate-dependent phosphate homeostasis in Arabidopsis. PLoS Genet. 7:1002021. 10.1371/journal.pgen.1002021, PMID: 21455488KantS.PengM.RothsteinS. J. (2011). Genetic regulation by NLA and microRNA827 for maintaining nitrate-dependent phosphate homeostasis in Arabidopsis. PLoS Genet. 7:1002021. 10.1371/journal.pgen.1002021, PMID: 21455488, KantS.PengM.RothsteinS. J. (2011). Genetic regulation by NLA and microRNA827 for maintaining nitrate-dependent phosphate homeostasis in Arabidopsis. PLoS Genet. 7:1002021. 10.1371/journal.pgen.1002021, PMID: 21455488
Takatoshi Kiba, J. Inaba, Toru Kudo, Nanae Ueda, Mineko Konishi, Nobutaka Mitsuda, Yuko Takiguchi, Youichi Kondou, T. Yoshizumi, M. Ohme-Takagi, M. Matsui, K. Yano, S. Yanagisawa, H. Sakakibara (2018)
Repression of Nitrogen Starvation Responses by Members of the Arabidopsis GARP-Type Transcription Factor NIGT1/HRS1 Subfamily[OPEN]Plant Cell, 30
(BustosR.CastrilloG.LinharesF.PugaM. I.RubioV.PerezP. J.. (2010). A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PLoS Genet. 6:e1001102. 10.1371/journal.pgen.1001102, PMID: 20838596)
BustosR.CastrilloG.LinharesF.PugaM. I.RubioV.PerezP. J.. (2010). A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PLoS Genet. 6:e1001102. 10.1371/journal.pgen.1001102, PMID: 20838596BustosR.CastrilloG.LinharesF.PugaM. I.RubioV.PerezP. J.. (2010). A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PLoS Genet. 6:e1001102. 10.1371/journal.pgen.1001102, PMID: 20838596, BustosR.CastrilloG.LinharesF.PugaM. I.RubioV.PerezP. J.. (2010). A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PLoS Genet. 6:e1001102. 10.1371/journal.pgen.1001102, PMID: 20838596
(RehmanH.AzizT.FarooqM.WakeelA.RengelZ. (2012). Zinc nutrition in rice production systems: a review. Plant Soil 361, 203–226. 10.1007/s11104-012-1346-9)
RehmanH.AzizT.FarooqM.WakeelA.RengelZ. (2012). Zinc nutrition in rice production systems: a review. Plant Soil 361, 203–226. 10.1007/s11104-012-1346-9RehmanH.AzizT.FarooqM.WakeelA.RengelZ. (2012). Zinc nutrition in rice production systems: a review. Plant Soil 361, 203–226. 10.1007/s11104-012-1346-9, RehmanH.AzizT.FarooqM.WakeelA.RengelZ. (2012). Zinc nutrition in rice production systems: a review. Plant Soil 361, 203–226. 10.1007/s11104-012-1346-9
Nadia Bouain, Zaigham Shahzad, Aida Rouached, G. Khan, P. Berthomieu, C. Abdelly, Y. Poirier, H. Rouached (2014)
Phosphate and zinc transport and signalling in plants: toward a better understanding of their homeostasis interaction.Journal of experimental botany, 65 20
Tzvetina Brumbarova, R. Ivanov (2019)
The Nutrient Response Transcriptional Regulome of ArabidopsisiScience, 19
Benjamin Gruber, R. Giehl, S. Friedel, N. Wirén (2013)
Plasticity of the Arabidopsis Root System under Nutrient Deficiencies1[C][W][OPEN]Plant Physiology, 163
(WirtzM.HellR. (2006). Functional analysis of the cysteine synthase protein complex from plants: structural, biochemical and regulatory properties. J. Plant Physiol. 163, 273–286. 10.1016/j.jplph.2005.11.013, PMID: 16386330)
WirtzM.HellR. (2006). Functional analysis of the cysteine synthase protein complex from plants: structural, biochemical and regulatory properties. J. Plant Physiol. 163, 273–286. 10.1016/j.jplph.2005.11.013, PMID: 16386330WirtzM.HellR. (2006). Functional analysis of the cysteine synthase protein complex from plants: structural, biochemical and regulatory properties. J. Plant Physiol. 163, 273–286. 10.1016/j.jplph.2005.11.013, PMID: 16386330, WirtzM.HellR. (2006). Functional analysis of the cysteine synthase protein complex from plants: structural, biochemical and regulatory properties. J. Plant Physiol. 163, 273–286. 10.1016/j.jplph.2005.11.013, PMID: 16386330
(WangX.LiQ.YuanW.CaoZ.QiB.KumarS.. (2016). The cytosolic Fe-S cluster assembly component MET18 is required for the full enzymatic activity of ROS1 in active DNA demethylation. Sci. Rep. 6:26443. 10.1038/srep26443, PMID: 27193999)
WangX.LiQ.YuanW.CaoZ.QiB.KumarS.. (2016). The cytosolic Fe-S cluster assembly component MET18 is required for the full enzymatic activity of ROS1 in active DNA demethylation. Sci. Rep. 6:26443. 10.1038/srep26443, PMID: 27193999WangX.LiQ.YuanW.CaoZ.QiB.KumarS.. (2016). The cytosolic Fe-S cluster assembly component MET18 is required for the full enzymatic activity of ROS1 in active DNA demethylation. Sci. Rep. 6:26443. 10.1038/srep26443, PMID: 27193999, WangX.LiQ.YuanW.CaoZ.QiB.KumarS.. (2016). The cytosolic Fe-S cluster assembly component MET18 is required for the full enzymatic activity of ROS1 in active DNA demethylation. Sci. Rep. 6:26443. 10.1038/srep26443, PMID: 27193999
(ZhaoK.WuY. (2017). Effects of Zn deficiency and bicarbonate on the growth and photosynthetic characteristics of four plant species. PLoS One 12:e0169812. 10.1371/journal.pone.0189620, PMID: 28076430)
ZhaoK.WuY. (2017). Effects of Zn deficiency and bicarbonate on the growth and photosynthetic characteristics of four plant species. PLoS One 12:e0169812. 10.1371/journal.pone.0189620, PMID: 28076430ZhaoK.WuY. (2017). Effects of Zn deficiency and bicarbonate on the growth and photosynthetic characteristics of four plant species. PLoS One 12:e0169812. 10.1371/journal.pone.0189620, PMID: 28076430, ZhaoK.WuY. (2017). Effects of Zn deficiency and bicarbonate on the growth and photosynthetic characteristics of four plant species. PLoS One 12:e0169812. 10.1371/journal.pone.0189620, PMID: 28076430
Bin Hu, Zhimin Jiang, Wei Wang, Yahong Qiu, Zhihua Zhang, Yongqiang Liu, Aifu Li, Xiaokai Gao, Linchuan Liu, Yangwen Qian, Xiahe Huang, Feifei Yu, Sai Kang, Yiqin Wang, Junpeng Xie, S. Cao, Lianhe Zhang, Yingchun Wang, Q. Xie, S. Kopriva, Chengcai Chu (2019)
Nitrate–NRT1.1B–SPX4 cascade integrates nitrogen and phosphorus signalling networks in plantsNature Plants, 5
Gabriel Krouk, S. Ruffel, R. Gutiérrez, A. Gojon, N. Crawford, G. Coruzzi, B. Lacombe (2011)
A framework integrating plant growth with hormones and nutrients.Trends in plant science, 16 4
Maria Hindt, M. Guerinot (2012)
Getting a sense for signals: regulation of the plant iron deficiency response.Biochimica et biophysica acta, 1823 9
G. Vigani, G. Zocchi, Khurram Bashir, K. Philippar, J. Briat (2013)
Signals from chloroplasts and mitochondria for iron homeostasis regulation.Trends in plant science, 18 6
Judith Mortel, Laia Villanueva, H. Schat, J. Kwekkeboom, S. Coughlan, P. Moerland, E. Themaat, M. Koornneef, Mark Aarts (2006)
Large Expression Differences in Genes for Iron and Zinc Homeostasis, Stress Response, and Lignin Biosynthesis Distinguish Roots of Arabidopsis thaliana and the Related Metal Hyperaccumulator Thlaspi caerulescens1[W]Plant Physiology, 142
(HufnagelB.de SousaS. M.AssisL.GuimaraesC. T.LeiserW.AzevedoG. C.. (2014). Duplicate and conquer: multiple homologs of phosphorus-starvation tolerance 1 enhance phosphorus acquisition and sorghum performance on low-phosphorus soils. Plant Physiol. 166, 659–767. 10.1104/pp.114.243949, PMID: 25189534)
HufnagelB.de SousaS. M.AssisL.GuimaraesC. T.LeiserW.AzevedoG. C.. (2014). Duplicate and conquer: multiple homologs of phosphorus-starvation tolerance 1 enhance phosphorus acquisition and sorghum performance on low-phosphorus soils. Plant Physiol. 166, 659–767. 10.1104/pp.114.243949, PMID: 25189534HufnagelB.de SousaS. M.AssisL.GuimaraesC. T.LeiserW.AzevedoG. C.. (2014). Duplicate and conquer: multiple homologs of phosphorus-starvation tolerance 1 enhance phosphorus acquisition and sorghum performance on low-phosphorus soils. Plant Physiol. 166, 659–767. 10.1104/pp.114.243949, PMID: 25189534, HufnagelB.de SousaS. M.AssisL.GuimaraesC. T.LeiserW.AzevedoG. C.. (2014). Duplicate and conquer: multiple homologs of phosphorus-starvation tolerance 1 enhance phosphorus acquisition and sorghum performance on low-phosphorus soils. Plant Physiol. 166, 659–767. 10.1104/pp.114.243949, PMID: 25189534
(KoprivovaA.KoprivaS. (2014). Molecular mechanisms of regulation of sulfate assimilation: first steps on a long road. Front. Plant Sci. 5:589. 10.3389/fpls.2014.00589, PMID: 25400653)
KoprivovaA.KoprivaS. (2014). Molecular mechanisms of regulation of sulfate assimilation: first steps on a long road. Front. Plant Sci. 5:589. 10.3389/fpls.2014.00589, PMID: 25400653KoprivovaA.KoprivaS. (2014). Molecular mechanisms of regulation of sulfate assimilation: first steps on a long road. Front. Plant Sci. 5:589. 10.3389/fpls.2014.00589, PMID: 25400653, KoprivovaA.KoprivaS. (2014). Molecular mechanisms of regulation of sulfate assimilation: first steps on a long road. Front. Plant Sci. 5:589. 10.3389/fpls.2014.00589, PMID: 25400653
(IslamM.MohsanS.AliS. (2012). Effect of different phosphorus and sulfur levels on nitrogen fixation and uptake by chickpea (Cicer arietinum L.). Agrociencia 46, 1–13.)
IslamM.MohsanS.AliS. (2012). Effect of different phosphorus and sulfur levels on nitrogen fixation and uptake by chickpea (Cicer arietinum L.). Agrociencia 46, 1–13.IslamM.MohsanS.AliS. (2012). Effect of different phosphorus and sulfur levels on nitrogen fixation and uptake by chickpea (Cicer arietinum L.). Agrociencia 46, 1–13., IslamM.MohsanS.AliS. (2012). Effect of different phosphorus and sulfur levels on nitrogen fixation and uptake by chickpea (Cicer arietinum L.). Agrociencia 46, 1–13.
(van de MortelJ. E.AlmarV. L.SchatH.KwekkeboomJ.CoughlanS.MoerlandP. D.. (2006). Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol. 142, 1127–1147. 10.1104/pp.106.082073, PMID: 16998091)
van de MortelJ. E.AlmarV. L.SchatH.KwekkeboomJ.CoughlanS.MoerlandP. D.. (2006). Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol. 142, 1127–1147. 10.1104/pp.106.082073, PMID: 16998091van de MortelJ. E.AlmarV. L.SchatH.KwekkeboomJ.CoughlanS.MoerlandP. D.. (2006). Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol. 142, 1127–1147. 10.1104/pp.106.082073, PMID: 16998091, van de MortelJ. E.AlmarV. L.SchatH.KwekkeboomJ.CoughlanS.MoerlandP. D.. (2006). Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol. 142, 1127–1147. 10.1104/pp.106.082073, PMID: 16998091
(CeruttiT.DelatorreC. A. (2013). Nitrogen and phosphorus interaction and cytokinin: response of the primary root of Arabidopsis thaliana and the pdr1 mutant. Plant Sci. 198, 91–97. 10.1016/j.plantsci.2012.10.007, PMID: 23199690)
CeruttiT.DelatorreC. A. (2013). Nitrogen and phosphorus interaction and cytokinin: response of the primary root of Arabidopsis thaliana and the pdr1 mutant. Plant Sci. 198, 91–97. 10.1016/j.plantsci.2012.10.007, PMID: 23199690CeruttiT.DelatorreC. A. (2013). Nitrogen and phosphorus interaction and cytokinin: response of the primary root of Arabidopsis thaliana and the pdr1 mutant. Plant Sci. 198, 91–97. 10.1016/j.plantsci.2012.10.007, PMID: 23199690, CeruttiT.DelatorreC. A. (2013). Nitrogen and phosphorus interaction and cytokinin: response of the primary root of Arabidopsis thaliana and the pdr1 mutant. Plant Sci. 198, 91–97. 10.1016/j.plantsci.2012.10.007, PMID: 23199690
(ConnollyE. L.FettJ. P.GuerinotM. L. (2002). Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14, 1347–1357. 10.1105/tpc.001263, PMID: 12084831)
ConnollyE. L.FettJ. P.GuerinotM. L. (2002). Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14, 1347–1357. 10.1105/tpc.001263, PMID: 12084831ConnollyE. L.FettJ. P.GuerinotM. L. (2002). Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14, 1347–1357. 10.1105/tpc.001263, PMID: 12084831, ConnollyE. L.FettJ. P.GuerinotM. L. (2002). Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14, 1347–1357. 10.1105/tpc.001263, PMID: 12084831
Chorpet Saenchai, Nadia Bouain, M. Kisko, C. Prom-u-thai, Patrick Doumas, H. Rouached (2016)
The Involvement of OsPHO1;1 in the Regulation of Iron Transport Through Integration of Phosphate and Zinc Deficiency SignalingFrontiers in Plant Science, 7
(KumarS. (2013). The role of biopesticides in sustainably feeding the nine billion global populations. J. Biofertil. Biopestici. 4:e114. 10.4172/2155-6202.1000e114)
KumarS. (2013). The role of biopesticides in sustainably feeding the nine billion global populations. J. Biofertil. Biopestici. 4:e114. 10.4172/2155-6202.1000e114KumarS. (2013). The role of biopesticides in sustainably feeding the nine billion global populations. J. Biofertil. Biopestici. 4:e114. 10.4172/2155-6202.1000e114, KumarS. (2013). The role of biopesticides in sustainably feeding the nine billion global populations. J. Biofertil. Biopestici. 4:e114. 10.4172/2155-6202.1000e114
Taiguer Cerutti, C. Delatorre (2013)
Nitrogen and phosphorus interaction and cytokinin: responses of the primary root of Arabidopsis thaliana and the pdr1 mutant.Plant science : an international journal of experimental plant biology, 198
S. Kant, M. Peng, S. Rothstein (2011)
Genetic Regulation by NLA and MicroRNA827 for Maintaining Nitrate-Dependent Phosphate Homeostasis in ArabidopsisPLoS Genetics, 7
(RuftyT. W.MackownC. T.IsraelD. W. (1990). Phosphorus stress effects on assimilation of nitrate. Plant Physiol. 94, 328–333. 10.1104/pp.94.1.328, PMID: 16667705)
RuftyT. W.MackownC. T.IsraelD. W. (1990). Phosphorus stress effects on assimilation of nitrate. Plant Physiol. 94, 328–333. 10.1104/pp.94.1.328, PMID: 16667705RuftyT. W.MackownC. T.IsraelD. W. (1990). Phosphorus stress effects on assimilation of nitrate. Plant Physiol. 94, 328–333. 10.1104/pp.94.1.328, PMID: 16667705, RuftyT. W.MackownC. T.IsraelD. W. (1990). Phosphorus stress effects on assimilation of nitrate. Plant Physiol. 94, 328–333. 10.1104/pp.94.1.328, PMID: 16667705
Anna Wawrzy´nska, A. Sirko, Margret Sauter
Mini Review Article
A. Stefanović, Cécile Ribot, H. Rouached, Yong Wang, J. Chong, L. Belbahri, Syndie Delessert, Y. Poirier (2007)
Members of the PHO1 gene family show limited functional redundancy in phosphate transfer to the shoot, and are regulated by phosphate deficiency via distinct pathways.The Plant journal : for cell and molecular biology, 50 6
(JiaZ.von WirenN. (2020). Signaling pathways underlying nitrogen-dependent changes in root system architecture: from model to crop species. J. Exp. Bot. 71, 4393–4404. 10.1093/jxb/eraa033, PMID: 31970412)
JiaZ.von WirenN. (2020). Signaling pathways underlying nitrogen-dependent changes in root system architecture: from model to crop species. J. Exp. Bot. 71, 4393–4404. 10.1093/jxb/eraa033, PMID: 31970412JiaZ.von WirenN. (2020). Signaling pathways underlying nitrogen-dependent changes in root system architecture: from model to crop species. J. Exp. Bot. 71, 4393–4404. 10.1093/jxb/eraa033, PMID: 31970412, JiaZ.von WirenN. (2020). Signaling pathways underlying nitrogen-dependent changes in root system architecture: from model to crop species. J. Exp. Bot. 71, 4393–4404. 10.1093/jxb/eraa033, PMID: 31970412
G. Khan, Samir Bouraine, Stefanie Wege, Yuanyuan Li, Matthieu Carbonnel, P. Berthomieu, Y. Poirier, H. Rouached (2014)
Coordination between zinc and phosphate homeostasis involves the transcription factor PHR1, the phosphate exporter PHO1, and its homologue PHO1;H3 in ArabidopsisJournal of Experimental Botany, 65
J. Berg, Yigong Shi (1996)
The Galvanization of Biology: A Growing Appreciation for the Roles of ZincScience, 271
(WawrzyńskaA.SirkoA. (2014). To control and to be controlled: understanding the Arabidopsis SLIM1 function in sulfur deficiency through comprehensive investigation of the EIL protein family. Front. Plant Sci. 5:575. 10.3389/fpls.2014.00575, PMID: 25374579)
WawrzyńskaA.SirkoA. (2014). To control and to be controlled: understanding the Arabidopsis SLIM1 function in sulfur deficiency through comprehensive investigation of the EIL protein family. Front. Plant Sci. 5:575. 10.3389/fpls.2014.00575, PMID: 25374579WawrzyńskaA.SirkoA. (2014). To control and to be controlled: understanding the Arabidopsis SLIM1 function in sulfur deficiency through comprehensive investigation of the EIL protein family. Front. Plant Sci. 5:575. 10.3389/fpls.2014.00575, PMID: 25374579, WawrzyńskaA.SirkoA. (2014). To control and to be controlled: understanding the Arabidopsis SLIM1 function in sulfur deficiency through comprehensive investigation of the EIL protein family. Front. Plant Sci. 5:575. 10.3389/fpls.2014.00575, PMID: 25374579
(LiangG.AiQ.YuD. Q. (2015). Uncovering miRNAs involved in crosstalk between nutrient deficiencies in Arabidopsis. Sci. Rep. 5:11813. 10.1038/srep11813, PMID: 26134148)
LiangG.AiQ.YuD. Q. (2015). Uncovering miRNAs involved in crosstalk between nutrient deficiencies in Arabidopsis. Sci. Rep. 5:11813. 10.1038/srep11813, PMID: 26134148LiangG.AiQ.YuD. Q. (2015). Uncovering miRNAs involved in crosstalk between nutrient deficiencies in Arabidopsis. Sci. Rep. 5:11813. 10.1038/srep11813, PMID: 26134148, LiangG.AiQ.YuD. Q. (2015). Uncovering miRNAs involved in crosstalk between nutrient deficiencies in Arabidopsis. Sci. Rep. 5:11813. 10.1038/srep11813, PMID: 26134148
(BriatJ. F.RouachedH.TissotN.GaymardF.DubosC. (2015). Integration of P, S, Fe, and Zn nutrition signals in Arabidopsis thaliana: potential involvement of PHOSPHATE STARVATION RESPONSE 1 (PHR1). Front. Plant Sci. 6:290. 10.3389/fpls.2015.00290, PMID: 25972885)
BriatJ. F.RouachedH.TissotN.GaymardF.DubosC. (2015). Integration of P, S, Fe, and Zn nutrition signals in Arabidopsis thaliana: potential involvement of PHOSPHATE STARVATION RESPONSE 1 (PHR1). Front. Plant Sci. 6:290. 10.3389/fpls.2015.00290, PMID: 25972885BriatJ. F.RouachedH.TissotN.GaymardF.DubosC. (2015). Integration of P, S, Fe, and Zn nutrition signals in Arabidopsis thaliana: potential involvement of PHOSPHATE STARVATION RESPONSE 1 (PHR1). Front. Plant Sci. 6:290. 10.3389/fpls.2015.00290, PMID: 25972885, BriatJ. F.RouachedH.TissotN.GaymardF.DubosC. (2015). Integration of P, S, Fe, and Zn nutrition signals in Arabidopsis thaliana: potential involvement of PHOSPHATE STARVATION RESPONSE 1 (PHR1). Front. Plant Sci. 6:290. 10.3389/fpls.2015.00290, PMID: 25972885
Priyanka Shahi, Serguei Loukianiouk, Andreas Bohne-Lang, M. Kenzelmann, Stefan Küffer, S. Maertens, Roland Eils, Hermann-Josef Gröne, Norbert Gretz, Benedikt Brors (2005)
Argonaute—a database for gene regulation by mammalian microRNAsNucleic Acids Research, 34
M. Pilon, C. Cohu, Karl Ravet, E. Salah, Abdel-Ghany, F. Gaymard, D. Salt, Lorraine Williams
Essential Transition Metal Homeostasis in Plants This Review Comes from a Themed Issue on Physiology and Metabolism Edited Iron Transport and Use of Iron Copper Regulation of Cu-protein Expression via the Cu-micrornas
(RaiV.SanagalaR.SinilalB.YadavS.SarkarA. K.DantuP. K.. (2015). Iron availability affects phosphate deficiency-mediated responses and evidence of cross-talk with auxin and zinc in Arabidopsis. Plant Cell Physiol. 56, 1107–1123. 10.1093/pcp/pcv035, PMID: 25759329)
RaiV.SanagalaR.SinilalB.YadavS.SarkarA. K.DantuP. K.. (2015). Iron availability affects phosphate deficiency-mediated responses and evidence of cross-talk with auxin and zinc in Arabidopsis. Plant Cell Physiol. 56, 1107–1123. 10.1093/pcp/pcv035, PMID: 25759329RaiV.SanagalaR.SinilalB.YadavS.SarkarA. K.DantuP. K.. (2015). Iron availability affects phosphate deficiency-mediated responses and evidence of cross-talk with auxin and zinc in Arabidopsis. Plant Cell Physiol. 56, 1107–1123. 10.1093/pcp/pcv035, PMID: 25759329, RaiV.SanagalaR.SinilalB.YadavS.SarkarA. K.DantuP. K.. (2015). Iron availability affects phosphate deficiency-mediated responses and evidence of cross-talk with auxin and zinc in Arabidopsis. Plant Cell Physiol. 56, 1107–1123. 10.1093/pcp/pcv035, PMID: 25759329
(MediciA.Marshall-ColonA.RonzierE.SzponarskiW.WangR.GojonA.. (2015). AtNIGT1/HRS1 integrates nitrate and phosphate signals at the Arabidopsis root tip. Nat. Commun. 6:6274. 10.1038/ncomms7274, PMID: 25723764)
MediciA.Marshall-ColonA.RonzierE.SzponarskiW.WangR.GojonA.. (2015). AtNIGT1/HRS1 integrates nitrate and phosphate signals at the Arabidopsis root tip. Nat. Commun. 6:6274. 10.1038/ncomms7274, PMID: 25723764MediciA.Marshall-ColonA.RonzierE.SzponarskiW.WangR.GojonA.. (2015). AtNIGT1/HRS1 integrates nitrate and phosphate signals at the Arabidopsis root tip. Nat. Commun. 6:6274. 10.1038/ncomms7274, PMID: 25723764, MediciA.Marshall-ColonA.RonzierE.SzponarskiW.WangR.GojonA.. (2015). AtNIGT1/HRS1 integrates nitrate and phosphate signals at the Arabidopsis root tip. Nat. Commun. 6:6274. 10.1038/ncomms7274, PMID: 25723764
(LiW.LanP. (2015). Genome-wide analysis of overlapping genes regulated by iron deficiency and phosphate starvation reveals new interactions in Arabidopsis roots. BMC Res. Notes 12:555. 10.1186/s13104-015-1524-y, PMID: 26459023)
LiW.LanP. (2015). Genome-wide analysis of overlapping genes regulated by iron deficiency and phosphate starvation reveals new interactions in Arabidopsis roots. BMC Res. Notes 12:555. 10.1186/s13104-015-1524-y, PMID: 26459023LiW.LanP. (2015). Genome-wide analysis of overlapping genes regulated by iron deficiency and phosphate starvation reveals new interactions in Arabidopsis roots. BMC Res. Notes 12:555. 10.1186/s13104-015-1524-y, PMID: 26459023, LiW.LanP. (2015). Genome-wide analysis of overlapping genes regulated by iron deficiency and phosphate starvation reveals new interactions in Arabidopsis roots. BMC Res. Notes 12:555. 10.1186/s13104-015-1524-y, PMID: 26459023
(MediciA.SzponarskiW.DangevilleP.SafiA.DissanayakeI. M.SaenchaiC.. (2019). Identification of molecular integrators shows that nitrogen actively controls the phosphate starvation response in plants. Plant Cell 31, 1171–1184. 10.1105/tpc.18.00656, PMID: 30872321)
MediciA.SzponarskiW.DangevilleP.SafiA.DissanayakeI. M.SaenchaiC.. (2019). Identification of molecular integrators shows that nitrogen actively controls the phosphate starvation response in plants. Plant Cell 31, 1171–1184. 10.1105/tpc.18.00656, PMID: 30872321MediciA.SzponarskiW.DangevilleP.SafiA.DissanayakeI. M.SaenchaiC.. (2019). Identification of molecular integrators shows that nitrogen actively controls the phosphate starvation response in plants. Plant Cell 31, 1171–1184. 10.1105/tpc.18.00656, PMID: 30872321, MediciA.SzponarskiW.DangevilleP.SafiA.DissanayakeI. M.SaenchaiC.. (2019). Identification of molecular integrators shows that nitrogen actively controls the phosphate starvation response in plants. Plant Cell 31, 1171–1184. 10.1105/tpc.18.00656, PMID: 30872321
(KhanG. A.BouraineS.WegeS.LiY.de CarbonnelM.BerthomieuP.. (2014). Coordination between zinc and phosphate homeostasis involves the transcription factor PHR1, the phosphate exporter PHO1, and its homologue PHO1; H3 in Arabidopsis. J. Exp. Bot. 65, 871–884. 10.1093/jxb/ert444, PMID: 24420568)
KhanG. A.BouraineS.WegeS.LiY.de CarbonnelM.BerthomieuP.. (2014). Coordination between zinc and phosphate homeostasis involves the transcription factor PHR1, the phosphate exporter PHO1, and its homologue PHO1; H3 in Arabidopsis. J. Exp. Bot. 65, 871–884. 10.1093/jxb/ert444, PMID: 24420568KhanG. A.BouraineS.WegeS.LiY.de CarbonnelM.BerthomieuP.. (2014). Coordination between zinc and phosphate homeostasis involves the transcription factor PHR1, the phosphate exporter PHO1, and its homologue PHO1; H3 in Arabidopsis. J. Exp. Bot. 65, 871–884. 10.1093/jxb/ert444, PMID: 24420568, KhanG. A.BouraineS.WegeS.LiY.de CarbonnelM.BerthomieuP.. (2014). Coordination between zinc and phosphate homeostasis involves the transcription factor PHR1, the phosphate exporter PHO1, and its homologue PHO1; H3 in Arabidopsis. J. Exp. Bot. 65, 871–884. 10.1093/jxb/ert444, PMID: 24420568
Suresh Kumar (2020)
Abiotic Stresses and Their Effects on Plant Growth, Yield and Nutritional Quality of Agricultural ProduceInternational Journal of Food Science and Agriculture
M. García, Macarena Angulo, Carlos García, C. Lucena, E. Alcántara, R. Pérez-Vicente, F. Romera (2021)
Influence of Ethylene Signaling in the Crosstalk Between Fe, S, and P Deficiency Responses in Arabidopsis thalianaFrontiers in Plant Science, 12
Yuri Ohkubo, Mina Tanaka, Ryo Tabata, Mari Ogawa-Ohnishi, Y. Matsubayashi (2017)
Shoot-to-root mobile polypeptides involved in systemic regulation of nitrogen acquisitionNature Plants, 3
Ana Perea-García, Antoni Garcia-Molina, Nuria Andrés-Colás, Francisco Vera-Sirera, M. Perez-Amador, S. Puig, L. Peñarrubia (2013)
Arabidopsis Copper Transport Protein COPT2 Participates in the Cross Talk between Iron Deficiency Responses and Low-Phosphate Signaling1[C][W]Plant Physiology, 162
(Maruyama-NakashitaA.NakamuraY.YamayaT.TakahashiH. (2004). A novel regulatory pathway of sulfate uptake in Arabidopsis roots: implication of CRE1/WOL/AHK4-mediated cytokinin-dependent regulation. Plant J. 38, 779–789. 10.1111/j.1365-313X.2004.02079.x, PMID: 15144379)
Maruyama-NakashitaA.NakamuraY.YamayaT.TakahashiH. (2004). A novel regulatory pathway of sulfate uptake in Arabidopsis roots: implication of CRE1/WOL/AHK4-mediated cytokinin-dependent regulation. Plant J. 38, 779–789. 10.1111/j.1365-313X.2004.02079.x, PMID: 15144379Maruyama-NakashitaA.NakamuraY.YamayaT.TakahashiH. (2004). A novel regulatory pathway of sulfate uptake in Arabidopsis roots: implication of CRE1/WOL/AHK4-mediated cytokinin-dependent regulation. Plant J. 38, 779–789. 10.1111/j.1365-313X.2004.02079.x, PMID: 15144379, Maruyama-NakashitaA.NakamuraY.YamayaT.TakahashiH. (2004). A novel regulatory pathway of sulfate uptake in Arabidopsis roots: implication of CRE1/WOL/AHK4-mediated cytokinin-dependent regulation. Plant J. 38, 779–789. 10.1111/j.1365-313X.2004.02079.x, PMID: 15144379
(SinclairA. G.SmithL. C.MorrisonJ. D.DoddK. G. (1997). Effects and interactions of phosphorus and sulphur on a mown white clover/ryegrass sward 1. Herbage dry matter production and balanced nutrition. New Zealand J. Agril. Res. 39, 421–433.)
SinclairA. G.SmithL. C.MorrisonJ. D.DoddK. G. (1997). Effects and interactions of phosphorus and sulphur on a mown white clover/ryegrass sward 1. Herbage dry matter production and balanced nutrition. New Zealand J. Agril. Res. 39, 421–433.SinclairA. G.SmithL. C.MorrisonJ. D.DoddK. G. (1997). Effects and interactions of phosphorus and sulphur on a mown white clover/ryegrass sward 1. Herbage dry matter production and balanced nutrition. New Zealand J. Agril. Res. 39, 421–433., SinclairA. G.SmithL. C.MorrisonJ. D.DoddK. G. (1997). Effects and interactions of phosphorus and sulphur on a mown white clover/ryegrass sward 1. Herbage dry matter production and balanced nutrition. New Zealand J. Agril. Res. 39, 421–433.
Xiaokang Wang, Qi Li, W. Yuan, Zhendong Cao, Bei Qi, Suresh Kumar, Yan Li, Weiqiang Qian (2016)
The cytosolic Fe-S cluster assembly component MET18 is required for the full enzymatic activity of ROS1 in active DNA demethylationScientific Reports, 6
(ViganiG.ZocchiG.BashirK.PhilipparK.BriatJ. F. (2013). Signals from chloroplasts and mitochondria for iron homeostasis regulation. Trends Plant Sci. 18, 305–311. 10.1016/j.tplants.2013.01.006, PMID: 23462548)
ViganiG.ZocchiG.BashirK.PhilipparK.BriatJ. F. (2013). Signals from chloroplasts and mitochondria for iron homeostasis regulation. Trends Plant Sci. 18, 305–311. 10.1016/j.tplants.2013.01.006, PMID: 23462548ViganiG.ZocchiG.BashirK.PhilipparK.BriatJ. F. (2013). Signals from chloroplasts and mitochondria for iron homeostasis regulation. Trends Plant Sci. 18, 305–311. 10.1016/j.tplants.2013.01.006, PMID: 23462548, ViganiG.ZocchiG.BashirK.PhilipparK.BriatJ. F. (2013). Signals from chloroplasts and mitochondria for iron homeostasis regulation. Trends Plant Sci. 18, 305–311. 10.1016/j.tplants.2013.01.006, PMID: 23462548
(WasakiJ.YonetaniR.KurodaS.ShinanoT.YazakiJ.FujiiF.. (2003). Transcriptomic analysis of metabolic changes by phosphorus stress in rice plant roots. Plant Cell Environ. 26, 1515–1523. 10.1046/j.1365-3040.2003.01074.x)
WasakiJ.YonetaniR.KurodaS.ShinanoT.YazakiJ.FujiiF.. (2003). Transcriptomic analysis of metabolic changes by phosphorus stress in rice plant roots. Plant Cell Environ. 26, 1515–1523. 10.1046/j.1365-3040.2003.01074.xWasakiJ.YonetaniR.KurodaS.ShinanoT.YazakiJ.FujiiF.. (2003). Transcriptomic analysis of metabolic changes by phosphorus stress in rice plant roots. Plant Cell Environ. 26, 1515–1523. 10.1046/j.1365-3040.2003.01074.x, WasakiJ.YonetaniR.KurodaS.ShinanoT.YazakiJ.FujiiF.. (2003). Transcriptomic analysis of metabolic changes by phosphorus stress in rice plant roots. Plant Cell Environ. 26, 1515–1523. 10.1046/j.1365-3040.2003.01074.x
(BouainN.KiskoM.RouachedA.DauzatM.LacombeB.BelgarouiN.. (2014b). Phosphate/zinc interaction analysis in two lettuce varieties reveals contrasting effects on biomass, photosynthesis, and dynamics of Pi transport. Biomed. Res. Int. 2014:548254. 10.1155/2014/548254, PMID: 25025059)
BouainN.KiskoM.RouachedA.DauzatM.LacombeB.BelgarouiN.. (2014b). Phosphate/zinc interaction analysis in two lettuce varieties reveals contrasting effects on biomass, photosynthesis, and dynamics of Pi transport. Biomed. Res. Int. 2014:548254. 10.1155/2014/548254, PMID: 25025059BouainN.KiskoM.RouachedA.DauzatM.LacombeB.BelgarouiN.. (2014b). Phosphate/zinc interaction analysis in two lettuce varieties reveals contrasting effects on biomass, photosynthesis, and dynamics of Pi transport. Biomed. Res. Int. 2014:548254. 10.1155/2014/548254, PMID: 25025059, BouainN.KiskoM.RouachedA.DauzatM.LacombeB.BelgarouiN.. (2014b). Phosphate/zinc interaction analysis in two lettuce varieties reveals contrasting effects on biomass, photosynthesis, and dynamics of Pi transport. Biomed. Res. Int. 2014:548254. 10.1155/2014/548254, PMID: 25025059
Michael Haydon, Miki Kawachi, M. Wirtz, S. Hillmer, R. Hell, U. Krämer (2012)
Vacuolar Nicotianamine Has Critical and Distinct Roles under Iron Deficiency and for Zinc Sequestration in Arabidopsis[C][W]Plant Cell, 24
(PereaG. A.GarciaM. A.AndrésN.VeraS. F.PérezA. M. A.PuigS.. (2013). Arabidopsis copper transport protein COPT2 participates in the cross-talk between iron deficiency responses and low-phosphate signaling. Plant Physiol. 162, 180–194. 10.1104/pp.112.212407, PMID: 23487432)
PereaG. A.GarciaM. A.AndrésN.VeraS. F.PérezA. M. A.PuigS.. (2013). Arabidopsis copper transport protein COPT2 participates in the cross-talk between iron deficiency responses and low-phosphate signaling. Plant Physiol. 162, 180–194. 10.1104/pp.112.212407, PMID: 23487432PereaG. A.GarciaM. A.AndrésN.VeraS. F.PérezA. M. A.PuigS.. (2013). Arabidopsis copper transport protein COPT2 participates in the cross-talk between iron deficiency responses and low-phosphate signaling. Plant Physiol. 162, 180–194. 10.1104/pp.112.212407, PMID: 23487432, PereaG. A.GarciaM. A.AndrésN.VeraS. F.PérezA. M. A.PuigS.. (2013). Arabidopsis copper transport protein COPT2 participates in the cross-talk between iron deficiency responses and low-phosphate signaling. Plant Physiol. 162, 180–194. 10.1104/pp.112.212407, PMID: 23487432
Tzu-Yin Liu, Chiung-Yun Chang, T. Chiou (2009)
The long-distance signaling of mineral macronutrients.Current opinion in plant biology, 12 3
B. Pant, Magdalena Musialak-Lange, P. Nuc, P. May, A. Buhtz, J. Kehr, Dirk Walther, W. Scheible (2009)
Identification of Nutrient-Responsive Arabidopsis and Rapeseed MicroRNAs by Comprehensive Real-Time Polymerase Chain Reaction Profiling and Small RNA Sequencing1[C][W][OA]Plant Physiology, 150
(BergJ. M.ShiY. (1996). The galvanization of biology: a growing appreciation for the roles of zinc. Science 271, 1081–1085. 10.1126/science.271.5252.1081, PMID: 8599083)
BergJ. M.ShiY. (1996). The galvanization of biology: a growing appreciation for the roles of zinc. Science 271, 1081–1085. 10.1126/science.271.5252.1081, PMID: 8599083BergJ. M.ShiY. (1996). The galvanization of biology: a growing appreciation for the roles of zinc. Science 271, 1081–1085. 10.1126/science.271.5252.1081, PMID: 8599083, BergJ. M.ShiY. (1996). The galvanization of biology: a growing appreciation for the roles of zinc. Science 271, 1081–1085. 10.1126/science.271.5252.1081, PMID: 8599083
(SchachtmanD. P.ShinR. (2007). Nutrient sensing and signaling: NPKS. Annu. Rev. Plant Biol. 58, 47–69. 10.1146/annurev.arplant.58.032806.103750, PMID: 17067284)
SchachtmanD. P.ShinR. (2007). Nutrient sensing and signaling: NPKS. Annu. Rev. Plant Biol. 58, 47–69. 10.1146/annurev.arplant.58.032806.103750, PMID: 17067284SchachtmanD. P.ShinR. (2007). Nutrient sensing and signaling: NPKS. Annu. Rev. Plant Biol. 58, 47–69. 10.1146/annurev.arplant.58.032806.103750, PMID: 17067284, SchachtmanD. P.ShinR. (2007). Nutrient sensing and signaling: NPKS. Annu. Rev. Plant Biol. 58, 47–69. 10.1146/annurev.arplant.58.032806.103750, PMID: 17067284
R. Giehl, A. Meda, N. Wirén (2009)
Moving up, down, and everywhere: signaling of micronutrients in plants.Current opinion in plant biology, 12 3
Zhongtao Jia, N. Wirén (2020)
Signaling pathways underlying nitrogen-dependent changes in root system architecture: from model to crop speciesJournal of Experimental Botany, 71
(ZhengL.HuangF.NarsaiR.WuJ.GiraudE.HeF.. (2009). Physiological and transcriptome analysis of iron and phosphorus interaction in rice seedlings. Plant Physiol. 151, 262–274. 10.1104/pp.109.141051, PMID: 19605549)
ZhengL.HuangF.NarsaiR.WuJ.GiraudE.HeF.. (2009). Physiological and transcriptome analysis of iron and phosphorus interaction in rice seedlings. Plant Physiol. 151, 262–274. 10.1104/pp.109.141051, PMID: 19605549ZhengL.HuangF.NarsaiR.WuJ.GiraudE.HeF.. (2009). Physiological and transcriptome analysis of iron and phosphorus interaction in rice seedlings. Plant Physiol. 151, 262–274. 10.1104/pp.109.141051, PMID: 19605549, ZhengL.HuangF.NarsaiR.WuJ.GiraudE.HeF.. (2009). Physiological and transcriptome analysis of iron and phosphorus interaction in rice seedlings. Plant Physiol. 151, 262–274. 10.1104/pp.109.141051, PMID: 19605549
M. Aulakh, N. Pasricha (1977)
Interaction effect of sulphur and phosphorus on growth and nutrient content of moong (Phaseolus aureus L.)Plant and Soil, 47
J. Elser, S. MatthewE., Bracken, E. Cleland, D. Gruner, W. Stanley, Harpole, H. Hillebrand, J. Ngai, W. Eric, Seabloom, J. Shurin, J. Smith (2007)
Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems.Ecology letters, 10 12
(ForieriI.WirtzM.HellR. (2013). Toward new perspectives on the interaction of iron and sulfur metabolism in plants. Front. Plant Sci. 4:357. 10.3389/fpls.2013.00357, PMID: 24106494)
ForieriI.WirtzM.HellR. (2013). Toward new perspectives on the interaction of iron and sulfur metabolism in plants. Front. Plant Sci. 4:357. 10.3389/fpls.2013.00357, PMID: 24106494ForieriI.WirtzM.HellR. (2013). Toward new perspectives on the interaction of iron and sulfur metabolism in plants. Front. Plant Sci. 4:357. 10.3389/fpls.2013.00357, PMID: 24106494, ForieriI.WirtzM.HellR. (2013). Toward new perspectives on the interaction of iron and sulfur metabolism in plants. Front. Plant Sci. 4:357. 10.3389/fpls.2013.00357, PMID: 24106494
(Franco-ZorrillaJ. M.GonzalezE.BustosR.LinharesF.LeyvaA.PazAresJ. (2004). The transcriptional control of plant responses to phosphate limitation. J. Exp. Bot. 55, 285–293. 10.1093/jxb/erh009, PMID: 14718495)
Franco-ZorrillaJ. M.GonzalezE.BustosR.LinharesF.LeyvaA.PazAresJ. (2004). The transcriptional control of plant responses to phosphate limitation. J. Exp. Bot. 55, 285–293. 10.1093/jxb/erh009, PMID: 14718495Franco-ZorrillaJ. M.GonzalezE.BustosR.LinharesF.LeyvaA.PazAresJ. (2004). The transcriptional control of plant responses to phosphate limitation. J. Exp. Bot. 55, 285–293. 10.1093/jxb/erh009, PMID: 14718495, Franco-ZorrillaJ. M.GonzalezE.BustosR.LinharesF.LeyvaA.PazAresJ. (2004). The transcriptional control of plant responses to phosphate limitation. J. Exp. Bot. 55, 285–293. 10.1093/jxb/erh009, PMID: 14718495
T. Leustek, M. Martin, J. Bick, J. Davies (2000)
PATHWAYS AND REGULATION OF SULFUR METABOLISM REVEALED THROUGH MOLECULAR AND GENETIC STUDIES.Annual review of plant physiology and plant molecular biology, 51
Hideki Takahashi (2010)
Regulation of sulfate transport and assimilation in plants.International review of cell and molecular biology, 281
Jinglong Zhang, Fan Jiang, Yixin Shen, Q. Zhan, B. Bai, Wei Chen, Yingjun Chi (2019)
Transcriptome analysis reveals candidate genes related to phosphorus starvation tolerance in sorghumBMC Plant Biology, 19
(GarciaM. J.PerezM. A.GarciaC.LucenaC.AlcantaraE.Perez-VicenteR.. (2021). Influence of ethylene signaling in the crosstalk between Fe, S and P deficiency responses in Arabidopsis thaliana. Front. Plant Sci. 12:643585. 10.3389/fpls.2021.643585, PMID: 33859661)
GarciaM. J.PerezM. A.GarciaC.LucenaC.AlcantaraE.Perez-VicenteR.. (2021). Influence of ethylene signaling in the crosstalk between Fe, S and P deficiency responses in Arabidopsis thaliana. Front. Plant Sci. 12:643585. 10.3389/fpls.2021.643585, PMID: 33859661GarciaM. J.PerezM. A.GarciaC.LucenaC.AlcantaraE.Perez-VicenteR.. (2021). Influence of ethylene signaling in the crosstalk between Fe, S and P deficiency responses in Arabidopsis thaliana. Front. Plant Sci. 12:643585. 10.3389/fpls.2021.643585, PMID: 33859661, GarciaM. J.PerezM. A.GarciaC.LucenaC.AlcantaraE.Perez-VicenteR.. (2021). Influence of ethylene signaling in the crosstalk between Fe, S and P deficiency responses in Arabidopsis thaliana. Front. Plant Sci. 12:643585. 10.3389/fpls.2021.643585, PMID: 33859661
(RouachedH.SeccoD.ArpatA. B.PoirierY. (2011). The transcription factor PHR1 plays a key role in the regulation of sulfate shoot-to-root flux upon phosphate starvation in Arabidopsis. BMC Plant Biol. 11:19. 10.1186/1471-2229-11-19, PMID: 21261953)
RouachedH.SeccoD.ArpatA. B.PoirierY. (2011). The transcription factor PHR1 plays a key role in the regulation of sulfate shoot-to-root flux upon phosphate starvation in Arabidopsis. BMC Plant Biol. 11:19. 10.1186/1471-2229-11-19, PMID: 21261953RouachedH.SeccoD.ArpatA. B.PoirierY. (2011). The transcription factor PHR1 plays a key role in the regulation of sulfate shoot-to-root flux upon phosphate starvation in Arabidopsis. BMC Plant Biol. 11:19. 10.1186/1471-2229-11-19, PMID: 21261953, RouachedH.SeccoD.ArpatA. B.PoirierY. (2011). The transcription factor PHR1 plays a key role in the regulation of sulfate shoot-to-root flux upon phosphate starvation in Arabidopsis. BMC Plant Biol. 11:19. 10.1186/1471-2229-11-19, PMID: 21261953
(MoranL. A.PeifferG. A.YinT.WhithamS. A.CookD.ShoemakerR. C.. (2014). Identification of candidate genes involved in early iron deficiency chlorosis signaling in soybean (Glycine max) roots and leaves. BMC Genomics 15:702. 10.1186/1471-2164-15-702, PMID: 25149281)
MoranL. A.PeifferG. A.YinT.WhithamS. A.CookD.ShoemakerR. C.. (2014). Identification of candidate genes involved in early iron deficiency chlorosis signaling in soybean (Glycine max) roots and leaves. BMC Genomics 15:702. 10.1186/1471-2164-15-702, PMID: 25149281MoranL. A.PeifferG. A.YinT.WhithamS. A.CookD.ShoemakerR. C.. (2014). Identification of candidate genes involved in early iron deficiency chlorosis signaling in soybean (Glycine max) roots and leaves. BMC Genomics 15:702. 10.1186/1471-2164-15-702, PMID: 25149281, MoranL. A.PeifferG. A.YinT.WhithamS. A.CookD.ShoemakerR. C.. (2014). Identification of candidate genes involved in early iron deficiency chlorosis signaling in soybean (Glycine max) roots and leaves. BMC Genomics 15:702. 10.1186/1471-2164-15-702, PMID: 25149281
Luqing Zheng, Fangliang Huang, Reena Narsai, Jiaojiao Wu, E. Giraud, F. He, Longjun Cheng, F. Wang, Ping Wu, J. Whelan, H. Shou (2009)
Physiological and Transcriptome Analysis of Iron and Phosphorus Interaction in Rice Seedlings1[C][W]Plant Physiology, 151
Motofumi Suzuki, Khurram Bashir, H. Inoue, Michiko Takahashi, H. Nakanishi, N. Nishizawa (2012)
Accumulation of starch in Zn-deficient riceRice, 5
F. Smith, W. Jackson (1987)
Nitrogen Enhancement of Phosphate Transport in Roots of Zea mays L: II. Kinetic and Inhibitor Studies.Plant physiology, 84 4
(SmithF. W.JacksonW. A. (1987). Nitrogen enhancement of phosphate‐ transport in roots of Zea mays L.: kinetic and inhibitor studies. Plant Physiol. 84, 1319–1324. 10.1104/pp.84.4.1319, PMID: 16665605)
SmithF. W.JacksonW. A. (1987). Nitrogen enhancement of phosphate‐ transport in roots of Zea mays L.: kinetic and inhibitor studies. Plant Physiol. 84, 1319–1324. 10.1104/pp.84.4.1319, PMID: 16665605SmithF. W.JacksonW. A. (1987). Nitrogen enhancement of phosphate‐ transport in roots of Zea mays L.: kinetic and inhibitor studies. Plant Physiol. 84, 1319–1324. 10.1104/pp.84.4.1319, PMID: 16665605, SmithF. W.JacksonW. A. (1987). Nitrogen enhancement of phosphate‐ transport in roots of Zea mays L.: kinetic and inhibitor studies. Plant Physiol. 84, 1319–1324. 10.1104/pp.84.4.1319, PMID: 16665605
Cong Zhao, Xi Chen, L. Ouyang, Jing Wang, M. Jin (2017)
Robust moving-blocker scatter correction for cone-beam computed tomography using multiple-view informationPLoS ONE, 12
R. Bari, Bikram Pant, M. Stitt, W. Scheible (2006)
PHO2, MicroRNA399, and PHR1 Define a Phosphate-Signaling Pathway in Plants1[W][OA]Plant Physiology, 141
Wenfeng Li, P. Lan (2015)
Genome-wide analysis of overlapping genes regulated by iron deficiency and phosphate starvation reveals new interactions in Arabidopsis rootsBMC Research Notes, 8
Qinsong Xu, Weiyue Chu, H. Qiu, Yongyang Fu, Sanjuan Cai, Sha Sha (2013)
Responses of Hydrilla verticillata (L.f.) Royle to zinc: in situ localization, subcellular distribution and physiological and ultrastructural modifications.Plant physiology and biochemistry : PPB, 69
Xianan Xie, Wentao Hu, Xiaoning Fan, Hui Chen, M. Tang (2019)
Interactions Between Phosphorus, Zinc, and Iron Homeostasis in Nonmycorrhizal and Mycorrhizal PlantsFrontiers in Plant Science, 10
(KumarS.MohapatraT. (2021). Deciphering epitranscriptome: modification of mRNA bases provides a new perspective for post-transcriptional regulation of gene expression. Front. Cell Dev. Biol. 9:628415. 10.3389/fcell.2021.628415, PMID: 33816473)
KumarS.MohapatraT. (2021). Deciphering epitranscriptome: modification of mRNA bases provides a new perspective for post-transcriptional regulation of gene expression. Front. Cell Dev. Biol. 9:628415. 10.3389/fcell.2021.628415, PMID: 33816473KumarS.MohapatraT. (2021). Deciphering epitranscriptome: modification of mRNA bases provides a new perspective for post-transcriptional regulation of gene expression. Front. Cell Dev. Biol. 9:628415. 10.3389/fcell.2021.628415, PMID: 33816473, KumarS.MohapatraT. (2021). Deciphering epitranscriptome: modification of mRNA bases provides a new perspective for post-transcriptional regulation of gene expression. Front. Cell Dev. Biol. 9:628415. 10.3389/fcell.2021.628415, PMID: 33816473
A. Medici, Amy Marshall-Colón, E. Ronzier, W. Szponarski, Rongchen Wang, A. Gojon, N. Crawford, S. Ruffel, G. Coruzzi, Gabriel Krouk (2015)
AtNIGT1/HRS1 integrates nitrate and phosphate signals at the Arabidopsis root tipNature communications, 6
(PoitoutA.CrabosA.PetříkI.NovákO.KroukG.LacombeB.. (2018). Responses to systemic nitrogen signaling in Arabidopsis roots involve trans-Zeatin in shoots. Plant Cell 30, 1243–1257. 10.1105/tpc.18.00011, PMID: 29764985)
PoitoutA.CrabosA.PetříkI.NovákO.KroukG.LacombeB.. (2018). Responses to systemic nitrogen signaling in Arabidopsis roots involve trans-Zeatin in shoots. Plant Cell 30, 1243–1257. 10.1105/tpc.18.00011, PMID: 29764985PoitoutA.CrabosA.PetříkI.NovákO.KroukG.LacombeB.. (2018). Responses to systemic nitrogen signaling in Arabidopsis roots involve trans-Zeatin in shoots. Plant Cell 30, 1243–1257. 10.1105/tpc.18.00011, PMID: 29764985, PoitoutA.CrabosA.PetříkI.NovákO.KroukG.LacombeB.. (2018). Responses to systemic nitrogen signaling in Arabidopsis roots involve trans-Zeatin in shoots. Plant Cell 30, 1243–1257. 10.1105/tpc.18.00011, PMID: 29764985
C. Colombo, G. Palumbo, Ji‐Zheng He, R. Pinton, S. Cesco (2014)
Review on iron availability in soil: interaction of Fe minerals, plants, and microbesJournal of Soils and Sediments, 14
(KaurS.KumarS. (2020). Nutriepigenomics: need of the day to integrate genetics, epigenetics and environment towards nutritious food for healthy life. Food Sci. Nutri. Technol. 5, 1–13. 10.23880/fsnt-16000239)
KaurS.KumarS. (2020). Nutriepigenomics: need of the day to integrate genetics, epigenetics and environment towards nutritious food for healthy life. Food Sci. Nutri. Technol. 5, 1–13. 10.23880/fsnt-16000239KaurS.KumarS. (2020). Nutriepigenomics: need of the day to integrate genetics, epigenetics and environment towards nutritious food for healthy life. Food Sci. Nutri. Technol. 5, 1–13. 10.23880/fsnt-16000239, KaurS.KumarS. (2020). Nutriepigenomics: need of the day to integrate genetics, epigenetics and environment towards nutritious food for healthy life. Food Sci. Nutri. Technol. 5, 1–13. 10.23880/fsnt-16000239
H. Rouached, D. Secco, Bulak Arpat, Y. Poirier (2011)
The transcription factor PHR1 plays a key role in the regulation of sulfate shoot-to-root flux upon phosphate starvation in ArabidopsisBMC Plant Biology, 11
Pilon (2009)
Essential transition metal homeostasis in plantsCurr. Opin. Plant Biol., 12
(StefanovicA.RibotC.RouachedH.WangY.ChongJ.BelbahriL.. (2007). Members of the PHO1 gene family show limited functional redundancy in phosphate transfer to the shoot, and are regulated by phosphate deficiency via distinct pathways. Plant J. 50, 982–994. 10.1111/j.1365-313X.2007.03108.x, PMID: 17461783)
StefanovicA.RibotC.RouachedH.WangY.ChongJ.BelbahriL.. (2007). Members of the PHO1 gene family show limited functional redundancy in phosphate transfer to the shoot, and are regulated by phosphate deficiency via distinct pathways. Plant J. 50, 982–994. 10.1111/j.1365-313X.2007.03108.x, PMID: 17461783StefanovicA.RibotC.RouachedH.WangY.ChongJ.BelbahriL.. (2007). Members of the PHO1 gene family show limited functional redundancy in phosphate transfer to the shoot, and are regulated by phosphate deficiency via distinct pathways. Plant J. 50, 982–994. 10.1111/j.1365-313X.2007.03108.x, PMID: 17461783, StefanovicA.RibotC.RouachedH.WangY.ChongJ.BelbahriL.. (2007). Members of the PHO1 gene family show limited functional redundancy in phosphate transfer to the shoot, and are regulated by phosphate deficiency via distinct pathways. Plant J. 50, 982–994. 10.1111/j.1365-313X.2007.03108.x, PMID: 17461783
Regla Bustos, Gabriel Castrillo, F. Linhares, María Puga, V. Rubio, Julián Pérez-Pérez, R. Solano, A. Leyva, J. Paz-Ares (2010)
A Central Regulatory System Largely Controls Transcriptional Activation and Repression Responses to Phosphate Starvation in ArabidopsisPLoS Genetics, 6
(TabataR.SumidaK.YoshiiT.OhyamaK.ShinoharaH.MatsubayashiY. (2014). Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signaling. Science 346, 343–346. 10.1126/science.1257800, PMID: 25324386)
TabataR.SumidaK.YoshiiT.OhyamaK.ShinoharaH.MatsubayashiY. (2014). Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signaling. Science 346, 343–346. 10.1126/science.1257800, PMID: 25324386TabataR.SumidaK.YoshiiT.OhyamaK.ShinoharaH.MatsubayashiY. (2014). Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signaling. Science 346, 343–346. 10.1126/science.1257800, PMID: 25324386, TabataR.SumidaK.YoshiiT.OhyamaK.ShinoharaH.MatsubayashiY. (2014). Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signaling. Science 346, 343–346. 10.1126/science.1257800, PMID: 25324386
Yozo Okazaki, H. Otsuki, T. Narisawa, Makoto Kobayashi, Satoru Sawai, Y. Kamide, M. Kusano, T. Aoki, M. Hirai, K. Saito (2013)
A new class of plant lipid is essential for protection against phosphorus depletionNature Communications, 4
(LinW. Y.HuangT. K.ChiouT. J. (2013). NITROGEN LIMITATION ADAPTATION, a target of microRNA827, mediates degradation of plasma membrane-localized phosphate transporters to maintain phosphate homeostasis in Arabidopsis. Plant Cell 25, 4061–4074. 10.1105/tpc.113.116012, PMID: 24122828)
LinW. Y.HuangT. K.ChiouT. J. (2013). NITROGEN LIMITATION ADAPTATION, a target of microRNA827, mediates degradation of plasma membrane-localized phosphate transporters to maintain phosphate homeostasis in Arabidopsis. Plant Cell 25, 4061–4074. 10.1105/tpc.113.116012, PMID: 24122828LinW. Y.HuangT. K.ChiouT. J. (2013). NITROGEN LIMITATION ADAPTATION, a target of microRNA827, mediates degradation of plasma membrane-localized phosphate transporters to maintain phosphate homeostasis in Arabidopsis. Plant Cell 25, 4061–4074. 10.1105/tpc.113.116012, PMID: 24122828, LinW. Y.HuangT. K.ChiouT. J. (2013). NITROGEN LIMITATION ADAPTATION, a target of microRNA827, mediates degradation of plasma membrane-localized phosphate transporters to maintain phosphate homeostasis in Arabidopsis. Plant Cell 25, 4061–4074. 10.1105/tpc.113.116012, PMID: 24122828
(ChaiwongN.BouainN.Prom-u-thaiC.RouachedH. (2020). Interplay between silicon and iron signaling pathways to regulate silicon transporter Lsi1 expression in rice. Front. Plant Sci. 11:1065. 10.3389/fpls.2020.01065, PMID: 32793256)
ChaiwongN.BouainN.Prom-u-thaiC.RouachedH. (2020). Interplay between silicon and iron signaling pathways to regulate silicon transporter Lsi1 expression in rice. Front. Plant Sci. 11:1065. 10.3389/fpls.2020.01065, PMID: 32793256ChaiwongN.BouainN.Prom-u-thaiC.RouachedH. (2020). Interplay between silicon and iron signaling pathways to regulate silicon transporter Lsi1 expression in rice. Front. Plant Sci. 11:1065. 10.3389/fpls.2020.01065, PMID: 32793256, ChaiwongN.BouainN.Prom-u-thaiC.RouachedH. (2020). Interplay between silicon and iron signaling pathways to regulate silicon transporter Lsi1 expression in rice. Front. Plant Sci. 11:1065. 10.3389/fpls.2020.01065, PMID: 32793256
S. Chotchutima, S. Tudsri, K. Kangvansaichol, P. Sripichitt (2016)
Effects of sulfur and phosphorus application on the growth, biomass yield and fuel properties of leucaena (Leucaena leucocephala (Lam.) de Wit.) as bioenergy crop on sandy infertile soilAgriculture and Natural Resources, 50
(KerkebL.MukherjeeI.ChatterjeeI.LahnerB.SaltD. E.ConnollyE. L. (2008). Iron-induced turnover of the Arabidopsis IRON-regulated transporter1 metal transporter requires lysine residues. Plant Physiol. 146, 1964–1973. 10.1104/pp.107.113282, PMID: 18305211)
KerkebL.MukherjeeI.ChatterjeeI.LahnerB.SaltD. E.ConnollyE. L. (2008). Iron-induced turnover of the Arabidopsis IRON-regulated transporter1 metal transporter requires lysine residues. Plant Physiol. 146, 1964–1973. 10.1104/pp.107.113282, PMID: 18305211KerkebL.MukherjeeI.ChatterjeeI.LahnerB.SaltD. E.ConnollyE. L. (2008). Iron-induced turnover of the Arabidopsis IRON-regulated transporter1 metal transporter requires lysine residues. Plant Physiol. 146, 1964–1973. 10.1104/pp.107.113282, PMID: 18305211, KerkebL.MukherjeeI.ChatterjeeI.LahnerB.SaltD. E.ConnollyE. L. (2008). Iron-induced turnover of the Arabidopsis IRON-regulated transporter1 metal transporter requires lysine residues. Plant Physiol. 146, 1964–1973. 10.1104/pp.107.113282, PMID: 18305211
Nadia Bouain, M. Kisko, Aida Rouached, M. Dauzat, B. Lacombe, Nibras Belgaroui, Tahar Ghnaya, J. Davidian, P. Berthomieu, C. Abdelly, H. Rouached (2014)
Phosphate/Zinc Interaction Analysis in Two Lettuce Varieties Reveals Contrasting Effects on Biomass, Photosynthesis, and Dynamics of Pi TransportBioMed Research International, 2014
Anna Koprivova, S. Kopriva (2014)
Molecular mechanisms of regulation of sulfate assimilation: first steps on a long roadFrontiers in Plant Science, 5
Gabriel Krouk, Takatoshi Kiba (2020)
Nitrogen and Phosphorus interactions in plants: from agronomic to physiological and molecular insights.Current opinion in plant biology, 57
(UedaY.KibaT.YanagisawaS. (2020). Nitrate-inducible NIGT1 proteins modulate phosphate uptake and starvation signalling via transcriptional regulation of SPX genes. Plant J. 102, 448–466. 10.1111/tpj.14637, PMID: 31811679)
UedaY.KibaT.YanagisawaS. (2020). Nitrate-inducible NIGT1 proteins modulate phosphate uptake and starvation signalling via transcriptional regulation of SPX genes. Plant J. 102, 448–466. 10.1111/tpj.14637, PMID: 31811679UedaY.KibaT.YanagisawaS. (2020). Nitrate-inducible NIGT1 proteins modulate phosphate uptake and starvation signalling via transcriptional regulation of SPX genes. Plant J. 102, 448–466. 10.1111/tpj.14637, PMID: 31811679, UedaY.KibaT.YanagisawaS. (2020). Nitrate-inducible NIGT1 proteins modulate phosphate uptake and starvation signalling via transcriptional regulation of SPX genes. Plant J. 102, 448–466. 10.1111/tpj.14637, PMID: 31811679
J. Pueyo, M. Quiñones, T. Peña, E. Fedorova, M. Lucas (2021)
Nitrogen and Phosphorus Interplay in Lupin Root Nodules and Cluster RootsFrontiers in Plant Science, 12
(SunY. F.LuoW. Z.JainA.LiuL.AiH.LiuX. L.. (2018). OsPHR3 affects the traits governing nitrogen homeostasis in rice. BMC Plant Biol. 18:241. 10.1186/s12870-018-1462-7, PMID: 30332988)
SunY. F.LuoW. Z.JainA.LiuL.AiH.LiuX. L.. (2018). OsPHR3 affects the traits governing nitrogen homeostasis in rice. BMC Plant Biol. 18:241. 10.1186/s12870-018-1462-7, PMID: 30332988SunY. F.LuoW. Z.JainA.LiuL.AiH.LiuX. L.. (2018). OsPHR3 affects the traits governing nitrogen homeostasis in rice. BMC Plant Biol. 18:241. 10.1186/s12870-018-1462-7, PMID: 30332988, SunY. F.LuoW. Z.JainA.LiuL.AiH.LiuX. L.. (2018). OsPHR3 affects the traits governing nitrogen homeostasis in rice. BMC Plant Biol. 18:241. 10.1186/s12870-018-1462-7, PMID: 30332988
Arthur Poitout, Amandine Crabos, I. Petřík, O. Novák, Gabriel Krouk, B. Lacombe, S. Ruffel (2018)
Responses to Systemic Nitrogen Signaling in Arabidopsis Roots Involve trans-Zeatin in ShootsPlant Cell, 30
Kyaw Aung, Shu-I. Lin, Chia-Chune Wu, Yu-Ting Huang, C. Su, T. Chiou (2006)
pho2, a Phosphate Overaccumulator, Is Caused by a Nonsense Mutation in a MicroRNA399 Target Gene1[W]Plant Physiology, 141
Vandna Rai, Raghavendrarao Sanagala, B. Sinilal, Sandeep Yadav, A. Sarkar, P. Dantu, Ajay Jain (2015)
Iron Availability Affects Phosphate Deficiency-Mediated Responses, and Evidence of Cross-Talk with Auxin and Zinc in Arabidopsis.Plant & cell physiology, 56 6
(BouainN.ShahzadZ.RouachedA.KhanG. A.BerthomieuP.AbdellyC.. (2014a). Phosphate and zinc transport and signalling in plants: toward a better understanding of their homeostasis interaction. J. Exp. Bot. 65, 5725–5741. 10.1093/jxb/eru314, PMID: 25080087)
BouainN.ShahzadZ.RouachedA.KhanG. A.BerthomieuP.AbdellyC.. (2014a). Phosphate and zinc transport and signalling in plants: toward a better understanding of their homeostasis interaction. J. Exp. Bot. 65, 5725–5741. 10.1093/jxb/eru314, PMID: 25080087BouainN.ShahzadZ.RouachedA.KhanG. A.BerthomieuP.AbdellyC.. (2014a). Phosphate and zinc transport and signalling in plants: toward a better understanding of their homeostasis interaction. J. Exp. Bot. 65, 5725–5741. 10.1093/jxb/eru314, PMID: 25080087, BouainN.ShahzadZ.RouachedA.KhanG. A.BerthomieuP.AbdellyC.. (2014a). Phosphate and zinc transport and signalling in plants: toward a better understanding of their homeostasis interaction. J. Exp. Bot. 65, 5725–5741. 10.1093/jxb/eru314, PMID: 25080087
(XieX.HuW.FanX.ChenH.TangM. (2019). Interactions between phosphorus, zinc, and iron homeostasis in nonmycorrhizal and mycorrhizal plants. Front. Plant Sci. 10:1172. 10.3389/fpls.2019.01172, PMID: 31616454)
XieX.HuW.FanX.ChenH.TangM. (2019). Interactions between phosphorus, zinc, and iron homeostasis in nonmycorrhizal and mycorrhizal plants. Front. Plant Sci. 10:1172. 10.3389/fpls.2019.01172, PMID: 31616454XieX.HuW.FanX.ChenH.TangM. (2019). Interactions between phosphorus, zinc, and iron homeostasis in nonmycorrhizal and mycorrhizal plants. Front. Plant Sci. 10:1172. 10.3389/fpls.2019.01172, PMID: 31616454, XieX.HuW.FanX.ChenH.TangM. (2019). Interactions between phosphorus, zinc, and iron homeostasis in nonmycorrhizal and mycorrhizal plants. Front. Plant Sci. 10:1172. 10.3389/fpls.2019.01172, PMID: 31616454
(ElserJ. J.BrackenM. E. S.ClelandE. E.GrunerD. S.HarpoleW. S.HillebrandH.. (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10, 1135–1142. 10.1111/j.1461-0248.2007.01113.x, PMID: 17922835)
ElserJ. J.BrackenM. E. S.ClelandE. E.GrunerD. S.HarpoleW. S.HillebrandH.. (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10, 1135–1142. 10.1111/j.1461-0248.2007.01113.x, PMID: 17922835ElserJ. J.BrackenM. E. S.ClelandE. E.GrunerD. S.HarpoleW. S.HillebrandH.. (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10, 1135–1142. 10.1111/j.1461-0248.2007.01113.x, PMID: 17922835, ElserJ. J.BrackenM. E. S.ClelandE. E.GrunerD. S.HarpoleW. S.HillebrandH.. (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10, 1135–1142. 10.1111/j.1461-0248.2007.01113.x, PMID: 17922835
(2020)
Nutriepigenomics: need of the day to integrate genetics, epigenetics and environment towards nutritious food for healthy life
Y. Ueda, Takatoshi Kiba, S. Yanagisawa (2019)
Nitrate-inducible NIGT1 Proteins Modulate Phosphate Uptake and Starvation Signaling via Transcriptional Regulation of SPX Genes.The Plant journal : for cell and molecular biology
S. Güsewell (2004)
N : P ratios in terrestrial plants: variation and functional significance.The New phytologist, 164 2
(KibaT.InabaJ.KudoT.UedaN.KonishiM.MitsudaN.. (2018). Repression of nitrogen starvation responses by members of the Arabidopsis GARP-type transcription factor NIGT1/HRS1 subfamily. Plant Cell 30, 925–945. 10.1105/tpc.17.00810, PMID: 29622567)
KibaT.InabaJ.KudoT.UedaN.KonishiM.MitsudaN.. (2018). Repression of nitrogen starvation responses by members of the Arabidopsis GARP-type transcription factor NIGT1/HRS1 subfamily. Plant Cell 30, 925–945. 10.1105/tpc.17.00810, PMID: 29622567KibaT.InabaJ.KudoT.UedaN.KonishiM.MitsudaN.. (2018). Repression of nitrogen starvation responses by members of the Arabidopsis GARP-type transcription factor NIGT1/HRS1 subfamily. Plant Cell 30, 925–945. 10.1105/tpc.17.00810, PMID: 29622567, KibaT.InabaJ.KudoT.UedaN.KonishiM.MitsudaN.. (2018). Repression of nitrogen starvation responses by members of the Arabidopsis GARP-type transcription factor NIGT1/HRS1 subfamily. Plant Cell 30, 925–945. 10.1105/tpc.17.00810, PMID: 29622567
Marie Barberon, Enric Zelazny, S. Robert, G. Conéjéro, C. Curie, J. Friml, G. Vert (2011)
Monoubiquitin-dependent endocytosis of the IRON-REGULATED TRANSPORTER 1 (IRT1) transporter controls iron uptake in plantsProceedings of the National Academy of Sciences, 108
(AmtmannA.ArmengaudP. (2009). Effects of N, P, K and S on metabolism: new knowledge gained from multi-level analysis. Curr. Opin. Plant Biol. 12, 275–283. 10.1016/j.pbi.2009.04.014, PMID: 19493694)
AmtmannA.ArmengaudP. (2009). Effects of N, P, K and S on metabolism: new knowledge gained from multi-level analysis. Curr. Opin. Plant Biol. 12, 275–283. 10.1016/j.pbi.2009.04.014, PMID: 19493694AmtmannA.ArmengaudP. (2009). Effects of N, P, K and S on metabolism: new knowledge gained from multi-level analysis. Curr. Opin. Plant Biol. 12, 275–283. 10.1016/j.pbi.2009.04.014, PMID: 19493694, AmtmannA.ArmengaudP. (2009). Effects of N, P, K and S on metabolism: new knowledge gained from multi-level analysis. Curr. Opin. Plant Biol. 12, 275–283. 10.1016/j.pbi.2009.04.014, PMID: 19493694
Wawrzyńska (2014)
To control and to be controlled: understanding the Arabidopsis SLIM1 function in sulfur deficiency through comprehensive investigation of the EIL protein familyFront. Plant Sci., 5
(VaralaK.Marshall-ColonA.CirroneJ.BrookM. D.PasquinoA. V.LeranS.. (2018). Temporal transcriptional logic of dynamic regulatory networks underlying nitrogen signaling and use in plants. Proc. Natl. Acad. Sci. U. S. A. 115, 6494–6499. 10.1073/pnas.1721487115, PMID: 29769331)
VaralaK.Marshall-ColonA.CirroneJ.BrookM. D.PasquinoA. V.LeranS.. (2018). Temporal transcriptional logic of dynamic regulatory networks underlying nitrogen signaling and use in plants. Proc. Natl. Acad. Sci. U. S. A. 115, 6494–6499. 10.1073/pnas.1721487115, PMID: 29769331VaralaK.Marshall-ColonA.CirroneJ.BrookM. D.PasquinoA. V.LeranS.. (2018). Temporal transcriptional logic of dynamic regulatory networks underlying nitrogen signaling and use in plants. Proc. Natl. Acad. Sci. U. S. A. 115, 6494–6499. 10.1073/pnas.1721487115, PMID: 29769331, VaralaK.Marshall-ColonA.CirroneJ.BrookM. D.PasquinoA. V.LeranS.. (2018). Temporal transcriptional logic of dynamic regulatory networks underlying nitrogen signaling and use in plants. Proc. Natl. Acad. Sci. U. S. A. 115, 6494–6499. 10.1073/pnas.1721487115, PMID: 29769331
B. Hufnagel, S. Sousa, L. Assis, C. Guimarães, W. Leiser, G. Azevedo, B. Negri, B. Larson, J. Shaff, M. Pastina, B. Barros, E. Weltzien, H. Rattunde, J. Viana, R. Clark, A. Falcão, R. Gazaffi, A. Garcia, R. Schaffert, L. Kochian, J. Magalhaes (2014)
Duplicate and Conquer: Multiple Homologs of PHOSPHORUS-STARVATION TOLERANCE1 Enhance Phosphorus Acquisition and Sorghum Performance on Low-Phosphorus Soils1[C][W][OPEN]Plant Physiology, 166
M. Wirtz, R. Hell (2006)
Functional analysis of the cysteine synthase protein complex from plants: structural, biochemical and regulatory properties.Journal of plant physiology, 163 3
(ColemanJ. E. (1998). Zinc enzymes. Curr. Opin. Chem. Biol. 2, 222–234. 10.1016/S1367-5931(98)80064-1, PMID: 9667939)
ColemanJ. E. (1998). Zinc enzymes. Curr. Opin. Chem. Biol. 2, 222–234. 10.1016/S1367-5931(98)80064-1, PMID: 9667939ColemanJ. E. (1998). Zinc enzymes. Curr. Opin. Chem. Biol. 2, 222–234. 10.1016/S1367-5931(98)80064-1, PMID: 9667939, ColemanJ. E. (1998). Zinc enzymes. Curr. Opin. Chem. Biol. 2, 222–234. 10.1016/S1367-5931(98)80064-1, PMID: 9667939
(KroukG.KibaT. (2020). Nitrogen and phosphorus interactions in plants: from agronomic to physiological and molecular insights. Curr. Opin. Plant Biol. 57, 1–6. 10.1016/j.pbi.2020.07.002, PMID: 32480312)
KroukG.KibaT. (2020). Nitrogen and phosphorus interactions in plants: from agronomic to physiological and molecular insights. Curr. Opin. Plant Biol. 57, 1–6. 10.1016/j.pbi.2020.07.002, PMID: 32480312KroukG.KibaT. (2020). Nitrogen and phosphorus interactions in plants: from agronomic to physiological and molecular insights. Curr. Opin. Plant Biol. 57, 1–6. 10.1016/j.pbi.2020.07.002, PMID: 32480312, KroukG.KibaT. (2020). Nitrogen and phosphorus interactions in plants: from agronomic to physiological and molecular insights. Curr. Opin. Plant Biol. 57, 1–6. 10.1016/j.pbi.2020.07.002, PMID: 32480312
(DaviesJ. P.YildizF. H.GrossmanA. (1996). Sac1, a putative regulator that is critical for survival of Chlamydomonas reinhardtii during sulfur deprivation. EMBO J. 15, 2150–2159. 10.1002/j.1460-2075.1996.tb00568.x, PMID: 8641280)
DaviesJ. P.YildizF. H.GrossmanA. (1996). Sac1, a putative regulator that is critical for survival of Chlamydomonas reinhardtii during sulfur deprivation. EMBO J. 15, 2150–2159. 10.1002/j.1460-2075.1996.tb00568.x, PMID: 8641280DaviesJ. P.YildizF. H.GrossmanA. (1996). Sac1, a putative regulator that is critical for survival of Chlamydomonas reinhardtii during sulfur deprivation. EMBO J. 15, 2150–2159. 10.1002/j.1460-2075.1996.tb00568.x, PMID: 8641280, DaviesJ. P.YildizF. H.GrossmanA. (1996). Sac1, a putative regulator that is critical for survival of Chlamydomonas reinhardtii during sulfur deprivation. EMBO J. 15, 2150–2159. 10.1002/j.1460-2075.1996.tb00568.x, PMID: 8641280
(GojonA.NacryP.DavidianJ. C. (2009). Root uptake regulation: a central process for NPS homeostasis in plants. Curr. Opin. Plant Biol. 12, 328–338. 10.1016/j.pbi.2009.04.015, PMID: 19501015)
GojonA.NacryP.DavidianJ. C. (2009). Root uptake regulation: a central process for NPS homeostasis in plants. Curr. Opin. Plant Biol. 12, 328–338. 10.1016/j.pbi.2009.04.015, PMID: 19501015GojonA.NacryP.DavidianJ. C. (2009). Root uptake regulation: a central process for NPS homeostasis in plants. Curr. Opin. Plant Biol. 12, 328–338. 10.1016/j.pbi.2009.04.015, PMID: 19501015, GojonA.NacryP.DavidianJ. C. (2009). Root uptake regulation: a central process for NPS homeostasis in plants. Curr. Opin. Plant Biol. 12, 328–338. 10.1016/j.pbi.2009.04.015, PMID: 19501015
(LiuT. Y.ChangC. Y.ChiouT. J. (2009). The long-distance signaling of mineral macronutrients. Curr. Opin. Plant Biol. 12, 312–319. 10.1016/j.pbi.2009.04.004, PMID: 19481493)
LiuT. Y.ChangC. Y.ChiouT. J. (2009). The long-distance signaling of mineral macronutrients. Curr. Opin. Plant Biol. 12, 312–319. 10.1016/j.pbi.2009.04.004, PMID: 19481493LiuT. Y.ChangC. Y.ChiouT. J. (2009). The long-distance signaling of mineral macronutrients. Curr. Opin. Plant Biol. 12, 312–319. 10.1016/j.pbi.2009.04.004, PMID: 19481493, LiuT. Y.ChangC. Y.ChiouT. J. (2009). The long-distance signaling of mineral macronutrients. Curr. Opin. Plant Biol. 12, 312–319. 10.1016/j.pbi.2009.04.004, PMID: 19481493
(ZhangJ.JiangF.ShenY.ZhanQ.BaiB.ChenW.. (2019). Transcriptome analysis reveals candidate genes related to phosphorus starvation tolerance in sorghum. BMC Plant Biol. 19:306. 10.1186/s12870-019-2179-y, PMID: 31296169)
ZhangJ.JiangF.ShenY.ZhanQ.BaiB.ChenW.. (2019). Transcriptome analysis reveals candidate genes related to phosphorus starvation tolerance in sorghum. BMC Plant Biol. 19:306. 10.1186/s12870-019-2179-y, PMID: 31296169ZhangJ.JiangF.ShenY.ZhanQ.BaiB.ChenW.. (2019). Transcriptome analysis reveals candidate genes related to phosphorus starvation tolerance in sorghum. BMC Plant Biol. 19:306. 10.1186/s12870-019-2179-y, PMID: 31296169, ZhangJ.JiangF.ShenY.ZhanQ.BaiB.ChenW.. (2019). Transcriptome analysis reveals candidate genes related to phosphorus starvation tolerance in sorghum. BMC Plant Biol. 19:306. 10.1186/s12870-019-2179-y, PMID: 31296169
(KhanM. S.HaasF. H.SamamiA. A.GholamiA. M.BauerA.FellenbergK.. (2010). Sulfite reductase defines a newly discovered bottleneck for assimilatory sulfate reduction and is essential for growth and development in Arabidopsis thaliana. Plant Cell 22, 1216–1231. 10.1105/tpc.110.074088, PMID: 20424176)
KhanM. S.HaasF. H.SamamiA. A.GholamiA. M.BauerA.FellenbergK.. (2010). Sulfite reductase defines a newly discovered bottleneck for assimilatory sulfate reduction and is essential for growth and development in Arabidopsis thaliana. Plant Cell 22, 1216–1231. 10.1105/tpc.110.074088, PMID: 20424176KhanM. S.HaasF. H.SamamiA. A.GholamiA. M.BauerA.FellenbergK.. (2010). Sulfite reductase defines a newly discovered bottleneck for assimilatory sulfate reduction and is essential for growth and development in Arabidopsis thaliana. Plant Cell 22, 1216–1231. 10.1105/tpc.110.074088, PMID: 20424176, KhanM. S.HaasF. H.SamamiA. A.GholamiA. M.BauerA.FellenbergK.. (2010). Sulfite reductase defines a newly discovered bottleneck for assimilatory sulfate reduction and is essential for growth and development in Arabidopsis thaliana. Plant Cell 22, 1216–1231. 10.1105/tpc.110.074088, PMID: 20424176
(PilonM.CohuC. M.RavetK.Abdel-GhanyS. E.GaymardF. (2009). Essential transition metal homeostasis in plants. Curr. Opin. Plant Biol. 12, 347–357. 10.1016/j.pbi.2009.04.011, PMID: 19481497)
PilonM.CohuC. M.RavetK.Abdel-GhanyS. E.GaymardF. (2009). Essential transition metal homeostasis in plants. Curr. Opin. Plant Biol. 12, 347–357. 10.1016/j.pbi.2009.04.011, PMID: 19481497PilonM.CohuC. M.RavetK.Abdel-GhanyS. E.GaymardF. (2009). Essential transition metal homeostasis in plants. Curr. Opin. Plant Biol. 12, 347–357. 10.1016/j.pbi.2009.04.011, PMID: 19481497, PilonM.CohuC. M.RavetK.Abdel-GhanyS. E.GaymardF. (2009). Essential transition metal homeostasis in plants. Curr. Opin. Plant Biol. 12, 347–357. 10.1016/j.pbi.2009.04.011, PMID: 19481497
Suresh Kumar (2018)
Environmental Stress, Food Safety, and Global Health: Biochemical, Genetic and Epigenetic Perspectives, 07
(KellermeierF.ArmengaudP.SeditasT. J.DankuJ.SaltD. E.AmtmannA. (2014). Analysis of the root system architecture of Arabidopsis provides a quantitative readout of crosstalk between nutritional signals. Plant Cell 26, 1480–1496. 10.1105/tpc.113.122101, PMID: 24692421)
KellermeierF.ArmengaudP.SeditasT. J.DankuJ.SaltD. E.AmtmannA. (2014). Analysis of the root system architecture of Arabidopsis provides a quantitative readout of crosstalk between nutritional signals. Plant Cell 26, 1480–1496. 10.1105/tpc.113.122101, PMID: 24692421KellermeierF.ArmengaudP.SeditasT. J.DankuJ.SaltD. E.AmtmannA. (2014). Analysis of the root system architecture of Arabidopsis provides a quantitative readout of crosstalk between nutritional signals. Plant Cell 26, 1480–1496. 10.1105/tpc.113.122101, PMID: 24692421, KellermeierF.ArmengaudP.SeditasT. J.DankuJ.SaltD. E.AmtmannA. (2014). Analysis of the root system architecture of Arabidopsis provides a quantitative readout of crosstalk between nutritional signals. Plant Cell 26, 1480–1496. 10.1105/tpc.113.122101, PMID: 24692421
Hiroaki Fujii, T. Chiou, Shu-I. Lin, Kyaw Aung, Jian‐Kang Zhu (2005)
A miRNA Involved in Phosphate-Starvation Response in ArabidopsisCurrent Biology, 15
(MaathuisF. J. (2009). Physiological functions of mineral macronutrients. Curr. Opin. Plant Biol. 12, 250–258. 10.1016/j.pbi.2009.04.003, PMID: 19473870)
MaathuisF. J. (2009). Physiological functions of mineral macronutrients. Curr. Opin. Plant Biol. 12, 250–258. 10.1016/j.pbi.2009.04.003, PMID: 19473870MaathuisF. J. (2009). Physiological functions of mineral macronutrients. Curr. Opin. Plant Biol. 12, 250–258. 10.1016/j.pbi.2009.04.003, PMID: 19473870, MaathuisF. J. (2009). Physiological functions of mineral macronutrients. Curr. Opin. Plant Biol. 12, 250–258. 10.1016/j.pbi.2009.04.003, PMID: 19473870
Adrienne Lauter, G. Peiffer, T. Yin, S. Whitham, Dianne Cook, Randy Shoemaker, M. Graham (2014)
Identification of candidate genes involved in early iron deficiency chlorosis signaling in soybean (Glycine max) roots and leavesBMC Genomics, 15
J. Franco-Zorrilla, Esperanza González, Regla Bustos, F. Linhares, A. Leyva, J. Paz-Ares (2004)
The transcriptional control of plant responses to phosphate limitation.Journal of experimental botany, 55 396
(SrestyT. V. S.Madhava RaoK. V. (1999). Ultrastructural alterations in response to zinc and nickel stress in the root cells of pigeonpea. Environ. Exp. Bot. 41, 3–13. 10.1016/S0098-8472(98)00034-3)
SrestyT. V. S.Madhava RaoK. V. (1999). Ultrastructural alterations in response to zinc and nickel stress in the root cells of pigeonpea. Environ. Exp. Bot. 41, 3–13. 10.1016/S0098-8472(98)00034-3SrestyT. V. S.Madhava RaoK. V. (1999). Ultrastructural alterations in response to zinc and nickel stress in the root cells of pigeonpea. Environ. Exp. Bot. 41, 3–13. 10.1016/S0098-8472(98)00034-3, SrestyT. V. S.Madhava RaoK. V. (1999). Ultrastructural alterations in response to zinc and nickel stress in the root cells of pigeonpea. Environ. Exp. Bot. 41, 3–13. 10.1016/S0098-8472(98)00034-3
(CuiY. N.LiX. T.YuanJ. Z.WangF. Z.WangS. M.MaQ. (2019). Nitrate transporter NPF7.3/NRT1.5 plays an essential role in regulating phosphate deficiency responses in Arabidopsis. Biochem. Biophys. Res. Commun. 508, 314–319. 10.1016/j.bbrc.2018.11.118, PMID: 30497780)
CuiY. N.LiX. T.YuanJ. Z.WangF. Z.WangS. M.MaQ. (2019). Nitrate transporter NPF7.3/NRT1.5 plays an essential role in regulating phosphate deficiency responses in Arabidopsis. Biochem. Biophys. Res. Commun. 508, 314–319. 10.1016/j.bbrc.2018.11.118, PMID: 30497780CuiY. N.LiX. T.YuanJ. Z.WangF. Z.WangS. M.MaQ. (2019). Nitrate transporter NPF7.3/NRT1.5 plays an essential role in regulating phosphate deficiency responses in Arabidopsis. Biochem. Biophys. Res. Commun. 508, 314–319. 10.1016/j.bbrc.2018.11.118, PMID: 30497780, CuiY. N.LiX. T.YuanJ. Z.WangF. Z.WangS. M.MaQ. (2019). Nitrate transporter NPF7.3/NRT1.5 plays an essential role in regulating phosphate deficiency responses in Arabidopsis. Biochem. Biophys. Res. Commun. 508, 314–319. 10.1016/j.bbrc.2018.11.118, PMID: 30497780
(HsiehL. C.LinS. I.ShihA. C.ChenJ. W.LinW. Y.TsengC. Y.. (2009). Uncovering smallRNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol. 151, 2120–2132. 10.1104/pp.109.147280, PMID: 19854858)
HsiehL. C.LinS. I.ShihA. C.ChenJ. W.LinW. Y.TsengC. Y.. (2009). Uncovering smallRNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol. 151, 2120–2132. 10.1104/pp.109.147280, PMID: 19854858HsiehL. C.LinS. I.ShihA. C.ChenJ. W.LinW. Y.TsengC. Y.. (2009). Uncovering smallRNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol. 151, 2120–2132. 10.1104/pp.109.147280, PMID: 19854858, HsiehL. C.LinS. I.ShihA. C.ChenJ. W.LinW. Y.TsengC. Y.. (2009). Uncovering smallRNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol. 151, 2120–2132. 10.1104/pp.109.147280, PMID: 19854858
(MissonJ.RaghothamaK. G.JainA.JouhetJ.BlockM. A.BlignyR.. (2005). A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc. Natl. Acad. Sci. U. S. A. 102, 11934–11939. 10.1073/pnas.0505266102, PMID: 16085708)
MissonJ.RaghothamaK. G.JainA.JouhetJ.BlockM. A.BlignyR.. (2005). A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc. Natl. Acad. Sci. U. S. A. 102, 11934–11939. 10.1073/pnas.0505266102, PMID: 16085708MissonJ.RaghothamaK. G.JainA.JouhetJ.BlockM. A.BlignyR.. (2005). A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc. Natl. Acad. Sci. U. S. A. 102, 11934–11939. 10.1073/pnas.0505266102, PMID: 16085708, MissonJ.RaghothamaK. G.JainA.JouhetJ.BlockM. A.BlignyR.. (2005). A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc. Natl. Acad. Sci. U. S. A. 102, 11934–11939. 10.1073/pnas.0505266102, PMID: 16085708
Suresh Kumar (2013)
The Role of Biopesticides in Sustainably Feeding the Nine Billion Global Populations, 4
Julie Misson, K. Raghothama, Ajay Jain, J. Jouhet, M. Block, R. Bligny, Philippe Ortet, A. Creff, S. Somerville, N. Rolland, Patrick Doumas, P. Nacry, Luis Herrerra-Estrella, L. Nussaume, M. Thibaud (2005)
A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation.Proceedings of the National Academy of Sciences of the United States of America, 102 33
Loubna Kerkeb, I. Mukherjee, Iera Chatterjee, Brett Lahner, D. Salt, E. Connolly (2008)
Iron-Induced Turnover of the Arabidopsis IRON-REGULATED TRANSPORTER1 Metal Transporter Requires Lysine Residues1[W][OA]Plant Physiology, 146
M. Khan, Florian Haas, Arman Samami, Amin Gholami, Andrea Bauer, K. Fellenberg, M. Reichelt, R. Hänsch, R. Mendel, A. Meyer, M. Wirtz, R. Hell (2010)
Sulfite Reductase Defines a Newly Discovered Bottleneck for Assimilatory Sulfate Reduction and Is Essential for Growth and Development in Arabidopsis thaliana[C][W]Plant Cell, 22
K. Zhao, Yanyou Wu (2017)
Effects of Zn Deficiency and Bicarbonate on the Growth and Photosynthetic Characteristics of Four Plant SpeciesPLoS ONE, 12
(OkazakiY.OtsukiH.NarisawaT.KobayashiM.SawaiS.KamideY.. (2013). A new class of plant lipid is essential for protection against phosphorus depletion. Nat. Commun. 4:1510. 10.1038/ncomms2512, PMID: 23443538)
OkazakiY.OtsukiH.NarisawaT.KobayashiM.SawaiS.KamideY.. (2013). A new class of plant lipid is essential for protection against phosphorus depletion. Nat. Commun. 4:1510. 10.1038/ncomms2512, PMID: 23443538OkazakiY.OtsukiH.NarisawaT.KobayashiM.SawaiS.KamideY.. (2013). A new class of plant lipid is essential for protection against phosphorus depletion. Nat. Commun. 4:1510. 10.1038/ncomms2512, PMID: 23443538, OkazakiY.OtsukiH.NarisawaT.KobayashiM.SawaiS.KamideY.. (2013). A new class of plant lipid is essential for protection against phosphorus depletion. Nat. Commun. 4:1510. 10.1038/ncomms2512, PMID: 23443538
(YuB.XuC.BenningC. (2002). Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth. Proc. Natl. Acad. Sci. U. S. A. 99, 5732–5737. 10.1073/pnas.082696499, PMID: 11960029)
YuB.XuC.BenningC. (2002). Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth. Proc. Natl. Acad. Sci. U. S. A. 99, 5732–5737. 10.1073/pnas.082696499, PMID: 11960029YuB.XuC.BenningC. (2002). Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth. Proc. Natl. Acad. Sci. U. S. A. 99, 5732–5737. 10.1073/pnas.082696499, PMID: 11960029, YuB.XuC.BenningC. (2002). Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth. Proc. Natl. Acad. Sci. U. S. A. 99, 5732–5737. 10.1073/pnas.082696499, PMID: 11960029
(LeustekT.MartinM. N.BickJ. A.DaviesJ. P. (2000). Pathways and regulation of sulphur metabolism revealed through molecular and genetic studies. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51, 141–165. 10.1146/annurev.arplant.51.1.14115012189)
LeustekT.MartinM. N.BickJ. A.DaviesJ. P. (2000). Pathways and regulation of sulphur metabolism revealed through molecular and genetic studies. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51, 141–165. 10.1146/annurev.arplant.51.1.14115012189LeustekT.MartinM. N.BickJ. A.DaviesJ. P. (2000). Pathways and regulation of sulphur metabolism revealed through molecular and genetic studies. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51, 141–165. 10.1146/annurev.arplant.51.1.14115012189, LeustekT.MartinM. N.BickJ. A.DaviesJ. P. (2000). Pathways and regulation of sulphur metabolism revealed through molecular and genetic studies. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51, 141–165. 10.1146/annurev.arplant.51.1.14115012189
J. Davies, F. Yildiz, A. Grossman (1996)
Sac1, a putative regulator that is critical for survival of Chlamydomonas reinhardtii during sulfur deprivation.The EMBO Journal, 15
(KumarS. (2018). Environmental stress, food safety, and global health: biochemical, genetic and epigenetic perspectives. Med. Saf. Glob. Health 7:145. 10.4172/2574-0407.1000145)
KumarS. (2018). Environmental stress, food safety, and global health: biochemical, genetic and epigenetic perspectives. Med. Saf. Glob. Health 7:145. 10.4172/2574-0407.1000145KumarS. (2018). Environmental stress, food safety, and global health: biochemical, genetic and epigenetic perspectives. Med. Saf. Glob. Health 7:145. 10.4172/2574-0407.1000145, KumarS. (2018). Environmental stress, food safety, and global health: biochemical, genetic and epigenetic perspectives. Med. Saf. Glob. Health 7:145. 10.4172/2574-0407.1000145
Marc Bournier, N. Tissot, S. Mari, Jossia Boucherez, E. Lacombe, J. Briat, F. Gaymard (2013)
Arabidopsis Ferritin 1 (AtFer1) Gene Regulation by the Phosphate Starvation Response 1 (AtPHR1) Transcription Factor Reveals a Direct Molecular Link between Iron and Phosphate Homeostasis*The Journal of Biological Chemistry, 288
Yafei Sun, W. Luo, Ajay Jain, Lu Liu, Hao Ai, Xiuli Liu, Bing Feng, Liang Zhang, Zhantian Zhang, Guohua Xu, Shubin Sun (2018)
OsPHR3 affects the traits governing nitrogen homeostasis in riceBMC Plant Biology, 18
T. Rufty, C. Mackown, Daniel Israel (1990)
Phosphorus stress effects on assimilation of nitrate.Plant physiology, 94 1
J. Wasaki, Ryoma Yonetani, S. Kuroda, T. Shinano, J. Yazaki, F. Fujii, Kanako Shimbo, K. Yamamoto, K. Sakata, T. Sasaki, N. Kishimoto, S. Kikuchi, M. Yamagishi, M. Osaki (2003)
Transcriptomic analysis of metabolic changes by phosphorus stress in rice plant rootsPlant Cell and Environment, 26
Ilaria Forieri, M. Wirtz, R. Hell (2013)
Toward new perspectives on the interaction of iron and sulfur metabolism in plantsFrontiers in Plant Science, 4
A. Sinclair, L. Smith, J. Morrison, K. Dodds (1996)
Effects and interactions of phosphorus and sulphur on a mown white clover/ryegrass swardNew Zealand Journal of Agricultural Research, 39
(GiehlR. F.MedaA. R.von WirénN. (2009). Moving up, down, and everywhere: signaling of micronutrients in plants. Curr. Opin. Plant Biol. 12, 320–327. 10.1016/j.pbi.2009.04.006, PMID: 19481496)
GiehlR. F.MedaA. R.von WirénN. (2009). Moving up, down, and everywhere: signaling of micronutrients in plants. Curr. Opin. Plant Biol. 12, 320–327. 10.1016/j.pbi.2009.04.006, PMID: 19481496GiehlR. F.MedaA. R.von WirénN. (2009). Moving up, down, and everywhere: signaling of micronutrients in plants. Curr. Opin. Plant Biol. 12, 320–327. 10.1016/j.pbi.2009.04.006, PMID: 19481496, GiehlR. F.MedaA. R.von WirénN. (2009). Moving up, down, and everywhere: signaling of micronutrients in plants. Curr. Opin. Plant Biol. 12, 320–327. 10.1016/j.pbi.2009.04.006, PMID: 19481496
Yan-Nong Cui, Xiao-Ting Li, Jian-Zhen Yuan, Fang-Zhen Wang, Suo-min Wang, Q. Ma (2019)
Nitrate transporter NPF7.3/NRT1.5 plays an essential role in regulating phosphate deficiency responses in Arabidopsis.Biochemical and biophysical research communications, 508 1
D. Schachtman, Ryoung Shin (2007)
Nutrient sensing and signaling: NPKS.Annual review of plant biology, 58
(BariR.Datt PantB.StittM.ScheibleW. R. (2006). PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol. 141, 988–999. 10.1104/pp.106.079707, PMID: 16679424)
BariR.Datt PantB.StittM.ScheibleW. R. (2006). PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol. 141, 988–999. 10.1104/pp.106.079707, PMID: 16679424BariR.Datt PantB.StittM.ScheibleW. R. (2006). PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol. 141, 988–999. 10.1104/pp.106.079707, PMID: 16679424, BariR.Datt PantB.StittM.ScheibleW. R. (2006). PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol. 141, 988–999. 10.1104/pp.106.079707, PMID: 16679424
(AulakhM. S.PasrichaN. S. (1977). Interaction effect of sulphur and phosphorus on growth and nutrient content of moong (Phaseolus aureus l.). Plant Soil 47, 341–350. 10.1007/BF00011493)
AulakhM. S.PasrichaN. S. (1977). Interaction effect of sulphur and phosphorus on growth and nutrient content of moong (Phaseolus aureus l.). Plant Soil 47, 341–350. 10.1007/BF00011493AulakhM. S.PasrichaN. S. (1977). Interaction effect of sulphur and phosphorus on growth and nutrient content of moong (Phaseolus aureus l.). Plant Soil 47, 341–350. 10.1007/BF00011493, AulakhM. S.PasrichaN. S. (1977). Interaction effect of sulphur and phosphorus on growth and nutrient content of moong (Phaseolus aureus l.). Plant Soil 47, 341–350. 10.1007/BF00011493
(HindtM. N.GuerinotM. L. (2012). Getting a sense for signals: regulation of the plant iron deficiency response. Biochim. Biophys. Acta 1823, 1521–1530. 10.1016/j.bbamcr.2012.03.010, PMID: 22483849)
HindtM. N.GuerinotM. L. (2012). Getting a sense for signals: regulation of the plant iron deficiency response. Biochim. Biophys. Acta 1823, 1521–1530. 10.1016/j.bbamcr.2012.03.010, PMID: 22483849HindtM. N.GuerinotM. L. (2012). Getting a sense for signals: regulation of the plant iron deficiency response. Biochim. Biophys. Acta 1823, 1521–1530. 10.1016/j.bbamcr.2012.03.010, PMID: 22483849, HindtM. N.GuerinotM. L. (2012). Getting a sense for signals: regulation of the plant iron deficiency response. Biochim. Biophys. Acta 1823, 1521–1530. 10.1016/j.bbamcr.2012.03.010, PMID: 22483849
(OhkuboY.TanakaM.TabataR.Ogawa-OhnishiM.MatsubayashiY. (2017). Shoot-to-root mobile polypeptides involved in systemic regulation of nitrogen acquisition. Nat. Plants 3:17029. 10.1038/nplants.2017.29, PMID: 28319056)
OhkuboY.TanakaM.TabataR.Ogawa-OhnishiM.MatsubayashiY. (2017). Shoot-to-root mobile polypeptides involved in systemic regulation of nitrogen acquisition. Nat. Plants 3:17029. 10.1038/nplants.2017.29, PMID: 28319056OhkuboY.TanakaM.TabataR.Ogawa-OhnishiM.MatsubayashiY. (2017). Shoot-to-root mobile polypeptides involved in systemic regulation of nitrogen acquisition. Nat. Plants 3:17029. 10.1038/nplants.2017.29, PMID: 28319056, OhkuboY.TanakaM.TabataR.Ogawa-OhnishiM.MatsubayashiY. (2017). Shoot-to-root mobile polypeptides involved in systemic regulation of nitrogen acquisition. Nat. Plants 3:17029. 10.1038/nplants.2017.29, PMID: 28319056
(FujiiH.ChiouT. J.LinS. I.AungK.ZhuJ. K. (2005). A miRNA involved in phosphate-starvation response in Arabidopsis. Curr. Biol. 15, 2038–2043. 10.1016/j.cub.2005.10.016, PMID: 16303564)
FujiiH.ChiouT. J.LinS. I.AungK.ZhuJ. K. (2005). A miRNA involved in phosphate-starvation response in Arabidopsis. Curr. Biol. 15, 2038–2043. 10.1016/j.cub.2005.10.016, PMID: 16303564FujiiH.ChiouT. J.LinS. I.AungK.ZhuJ. K. (2005). A miRNA involved in phosphate-starvation response in Arabidopsis. Curr. Biol. 15, 2038–2043. 10.1016/j.cub.2005.10.016, PMID: 16303564, FujiiH.ChiouT. J.LinS. I.AungK.ZhuJ. K. (2005). A miRNA involved in phosphate-starvation response in Arabidopsis. Curr. Biol. 15, 2038–2043. 10.1016/j.cub.2005.10.016, PMID: 16303564
(KumarS.ChinnusamyV.MohapatraT. (2018). Epigenetics of modified DNA bases: 5-methylcytosine and beyond. Front. Genet. 9:640. 10.3389/fgene.2018.00640, PMID: 30619465)
KumarS.ChinnusamyV.MohapatraT. (2018). Epigenetics of modified DNA bases: 5-methylcytosine and beyond. Front. Genet. 9:640. 10.3389/fgene.2018.00640, PMID: 30619465KumarS.ChinnusamyV.MohapatraT. (2018). Epigenetics of modified DNA bases: 5-methylcytosine and beyond. Front. Genet. 9:640. 10.3389/fgene.2018.00640, PMID: 30619465, KumarS.ChinnusamyV.MohapatraT. (2018). Epigenetics of modified DNA bases: 5-methylcytosine and beyond. Front. Genet. 9:640. 10.3389/fgene.2018.00640, PMID: 30619465
J. Briat, H. Rouached, N. Tissot, F. Gaymard, C. Dubos (2015)
Integration of P, S, Fe, and Zn nutrition signals in Arabidopsis thaliana: potential involvement of PHOSPHATE STARVATION RESPONSE 1 (PHR1)Frontiers in Plant Science, 6
(SugimotoK.SatoN.TsuzukiM. (2007). Utilization of a chloroplast membrane sulfolipid as a major internal sulfur source for protein synthesis in the early phase of sulfur starvation in Chlamydomonas reinhardtii. FEBS Lett. 581, 4519–4522. 10.1016/j.febslet.2007.08.035, PMID: 17765894)
SugimotoK.SatoN.TsuzukiM. (2007). Utilization of a chloroplast membrane sulfolipid as a major internal sulfur source for protein synthesis in the early phase of sulfur starvation in Chlamydomonas reinhardtii. FEBS Lett. 581, 4519–4522. 10.1016/j.febslet.2007.08.035, PMID: 17765894SugimotoK.SatoN.TsuzukiM. (2007). Utilization of a chloroplast membrane sulfolipid as a major internal sulfur source for protein synthesis in the early phase of sulfur starvation in Chlamydomonas reinhardtii. FEBS Lett. 581, 4519–4522. 10.1016/j.febslet.2007.08.035, PMID: 17765894, SugimotoK.SatoN.TsuzukiM. (2007). Utilization of a chloroplast membrane sulfolipid as a major internal sulfur source for protein synthesis in the early phase of sulfur starvation in Chlamydomonas reinhardtii. FEBS Lett. 581, 4519–4522. 10.1016/j.febslet.2007.08.035, PMID: 17765894
Nanthana Chaiwong, Nadia Bouain, C. Prom-u-thai, H. Rouached (2020)
Interplay Between Silicon and Iron Signaling Pathways to Regulate Silicon Transporter Lsi1 Expression in RiceFrontiers in Plant Science, 11
A. Amtmann, P. Armengaud (2009)
Effects of N, P, K and S on metabolism: new knowledge gained from multi-level analysis.Current opinion in plant biology, 12 3
Gang Liang, Qin Ai, Diqiu Yu (2015)
Uncovering miRNAs involved in crosstalk between nutrient deficiencies in ArabidopsisScientific Reports, 5
(PantB. D.Musialak-LangeM.NucP.MayP.BuhtzA.KehrJ.. (2009). Identification of nutrient responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and smallRNA sequencing. Plant Physiol. 150, 1541–1555. 10.1104/pp.109.139139, PMID: 19465578)
PantB. D.Musialak-LangeM.NucP.MayP.BuhtzA.KehrJ.. (2009). Identification of nutrient responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and smallRNA sequencing. Plant Physiol. 150, 1541–1555. 10.1104/pp.109.139139, PMID: 19465578PantB. D.Musialak-LangeM.NucP.MayP.BuhtzA.KehrJ.. (2009). Identification of nutrient responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and smallRNA sequencing. Plant Physiol. 150, 1541–1555. 10.1104/pp.109.139139, PMID: 19465578, PantB. D.Musialak-LangeM.NucP.MayP.BuhtzA.KehrJ.. (2009). Identification of nutrient responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and smallRNA sequencing. Plant Physiol. 150, 1541–1555. 10.1104/pp.109.139139, PMID: 19465578
H. Rehman, T. Aziz, M. Farooq, A. Wakeel, Z. Rengel (2012)
Zinc nutrition in rice production systems: a reviewPlant and Soil, 361
(SuzukiM.BashirK.InoueH.TakahashiM.NakanishiH.NishizawaN. (2012). Accumulation of starch in Zn-deficient rice. Rice 5, 1–8. 10.1186/1939-8433-5-9, PMID: 24764501)
SuzukiM.BashirK.InoueH.TakahashiM.NakanishiH.NishizawaN. (2012). Accumulation of starch in Zn-deficient rice. Rice 5, 1–8. 10.1186/1939-8433-5-9, PMID: 24764501SuzukiM.BashirK.InoueH.TakahashiM.NakanishiH.NishizawaN. (2012). Accumulation of starch in Zn-deficient rice. Rice 5, 1–8. 10.1186/1939-8433-5-9, PMID: 24764501, SuzukiM.BashirK.InoueH.TakahashiM.NakanishiH.NishizawaN. (2012). Accumulation of starch in Zn-deficient rice. Rice 5, 1–8. 10.1186/1939-8433-5-9, PMID: 24764501
(HaydonM. J.KawachiM.WirtzM.HillmerS.HellR.KramerU. (2012). Vacuolar nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in Arabidopsis. Plant Cell 24, 724–737. 10.1105/tpc.111.095042, PMID: 22374397)
HaydonM. J.KawachiM.WirtzM.HillmerS.HellR.KramerU. (2012). Vacuolar nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in Arabidopsis. Plant Cell 24, 724–737. 10.1105/tpc.111.095042, PMID: 22374397HaydonM. J.KawachiM.WirtzM.HillmerS.HellR.KramerU. (2012). Vacuolar nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in Arabidopsis. Plant Cell 24, 724–737. 10.1105/tpc.111.095042, PMID: 22374397, HaydonM. J.KawachiM.WirtzM.HillmerS.HellR.KramerU. (2012). Vacuolar nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in Arabidopsis. Plant Cell 24, 724–737. 10.1105/tpc.111.095042, PMID: 22374397
E. Connolly, J. Fett, M. Guerinot (2002)
Expression of the IRT1 Metal Transporter Is Controlled by Metals at the Levels of Transcript and Protein Accumulation Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.001263.The Plant Cell Online, 14
Ryo Tabata, Kumiko Sumida, Tomoaki Yoshii, Kentaro Ohyama, Hidefumi Shinohara, Y. Matsubayashi (2014)
Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signalingScience, 346
(BrumbarovaT.IvanovR. (2019). The nutrient response transcriptional regulome of Arabidopsis. iScience 19, 358–368. 10.1016/j.isci.2019.07.045, PMID: 31415997)
BrumbarovaT.IvanovR. (2019). The nutrient response transcriptional regulome of Arabidopsis. iScience 19, 358–368. 10.1016/j.isci.2019.07.045, PMID: 31415997BrumbarovaT.IvanovR. (2019). The nutrient response transcriptional regulome of Arabidopsis. iScience 19, 358–368. 10.1016/j.isci.2019.07.045, PMID: 31415997, BrumbarovaT.IvanovR. (2019). The nutrient response transcriptional regulome of Arabidopsis. iScience 19, 358–368. 10.1016/j.isci.2019.07.045, PMID: 31415997
M. Peng, C. Hannam, Honglan Gu, Y. Bi, S. Rothstein (2007)
A mutation in NLA, which encodes a RING-type ubiquitin ligase, disrupts the adaptability of Arabidopsis to nitrogen limitation.The Plant journal : for cell and molecular biology, 50 2
(SmithF. W.RaeA. L.HawkesfordM. J. (2000). Molecular mechanisms of phosphate and sulphate transport in plants. Biochim. Biophys. Acta 1465, 236–245. 10.1016/s0005-2736(00)00141-3, PMID: 10748257)
SmithF. W.RaeA. L.HawkesfordM. J. (2000). Molecular mechanisms of phosphate and sulphate transport in plants. Biochim. Biophys. Acta 1465, 236–245. 10.1016/s0005-2736(00)00141-3, PMID: 10748257SmithF. W.RaeA. L.HawkesfordM. J. (2000). Molecular mechanisms of phosphate and sulphate transport in plants. Biochim. Biophys. Acta 1465, 236–245. 10.1016/s0005-2736(00)00141-3, PMID: 10748257, SmithF. W.RaeA. L.HawkesfordM. J. (2000). Molecular mechanisms of phosphate and sulphate transport in plants. Biochim. Biophys. Acta 1465, 236–245. 10.1016/s0005-2736(00)00141-3, PMID: 10748257
(XuQ.ChuW.QiuH.FuY.CaiS.ShaS. (2013). Responses of Hydrilla verticillata (L.f.) Royle to zinc: in situ localization, subcellular distribution and physiological and ultrastructural modifications. Plant Physiol. Biochem. 69, 43–48. 10.1016/j.plaphy.2013.04.018, PMID: 23712014)
XuQ.ChuW.QiuH.FuY.CaiS.ShaS. (2013). Responses of Hydrilla verticillata (L.f.) Royle to zinc: in situ localization, subcellular distribution and physiological and ultrastructural modifications. Plant Physiol. Biochem. 69, 43–48. 10.1016/j.plaphy.2013.04.018, PMID: 23712014XuQ.ChuW.QiuH.FuY.CaiS.ShaS. (2013). Responses of Hydrilla verticillata (L.f.) Royle to zinc: in situ localization, subcellular distribution and physiological and ultrastructural modifications. Plant Physiol. Biochem. 69, 43–48. 10.1016/j.plaphy.2013.04.018, PMID: 23712014, XuQ.ChuW.QiuH.FuY.CaiS.ShaS. (2013). Responses of Hydrilla verticillata (L.f.) Royle to zinc: in situ localization, subcellular distribution and physiological and ultrastructural modifications. Plant Physiol. Biochem. 69, 43–48. 10.1016/j.plaphy.2013.04.018, PMID: 23712014
L. Hsieh, Shu-I. Lin, A. Shih, June-Wei Chen, Wei-Yi Lin, C. Tseng, Wen-Hsiung Li, T. Chiou (2009)
Uncovering Small RNA-Mediated Responses to Phosphate Deficiency in Arabidopsis by Deep Sequencing1[W][OA]Plant Physiology, 151
(AungK.LinS. I.WuC. C.HuangY. T.SuC. L.ChiouT. J. (2006). pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol. 141, 1000–1011. 10.1104/pp.106.078063, PMID: 16679417)
AungK.LinS. I.WuC. C.HuangY. T.SuC. L.ChiouT. J. (2006). pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol. 141, 1000–1011. 10.1104/pp.106.078063, PMID: 16679417AungK.LinS. I.WuC. C.HuangY. T.SuC. L.ChiouT. J. (2006). pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol. 141, 1000–1011. 10.1104/pp.106.078063, PMID: 16679417, AungK.LinS. I.WuC. C.HuangY. T.SuC. L.ChiouT. J. (2006). pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol. 141, 1000–1011. 10.1104/pp.106.078063, PMID: 16679417
Jean-Philippe Vert, Robert Thurman, William Noble (2003)
TranscriptionChemistry and Biology of Non‐Canonical Nucleic Acids
F. Smith, A. Rae, M. Hawkesford (2000)
Molecular mechanisms of phosphate and sulphate transport in plants.Biochimica et biophysica acta, 1465 1-2
Fabian Kellermeier, P. Armengaud, Triona Seditas, John Danku, D. Salt, A. Amtmann (2014)
Analysis of the Root System Architecture of Arabidopsis Provides a Quantitative Readout of Crosstalk between Nutritional Signals[W][OPEN]Plant Cell, 26
Bin Yu, Changcheng Xu, C. Benning (2002)
Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growthProceedings of the National Academy of Sciences of the United States of America, 99
A. Medici, W. Szponarski, Pierre Dangeville, Alaeddine Safi, I. Dissanayake, Chorpet Saenchai, A. Emanuel, V. Rubio, B. Lacombe, S. Ruffel, M. Tanurdžić, H. Rouached, Gabriel Krouk (2019)
Identification of Molecular Integrators Shows that Nitrogen Actively Controls the Phosphate Starvation Response in PlantsPlant Cell, 31
M. Salman, P. Kitchen, Jeffrey Iliff, R. Bill (2021)
Aquaporin 4 and glymphatic flow have central roles in brain fluid homeostasisNature Reviews Neuroscience, 22
(PengM.HannamC.GuH.BiY. M.RothsteinS. J. (2007). A mutation in NLA, which encodes a RING-type ubiquitin ligase, disrupts the adaptability of Arabidopsis to nitrogen limitation. Plant J. 50, 320–337. 10.1111/j.1365-313X.2007.03050.x, PMID: 17355433)
PengM.HannamC.GuH.BiY. M.RothsteinS. J. (2007). A mutation in NLA, which encodes a RING-type ubiquitin ligase, disrupts the adaptability of Arabidopsis to nitrogen limitation. Plant J. 50, 320–337. 10.1111/j.1365-313X.2007.03050.x, PMID: 17355433PengM.HannamC.GuH.BiY. M.RothsteinS. J. (2007). A mutation in NLA, which encodes a RING-type ubiquitin ligase, disrupts the adaptability of Arabidopsis to nitrogen limitation. Plant J. 50, 320–337. 10.1111/j.1365-313X.2007.03050.x, PMID: 17355433, PengM.HannamC.GuH.BiY. M.RothsteinS. J. (2007). A mutation in NLA, which encodes a RING-type ubiquitin ligase, disrupts the adaptability of Arabidopsis to nitrogen limitation. Plant J. 50, 320–337. 10.1111/j.1365-313X.2007.03050.x, PMID: 17355433
F. Maathuis (2009)
Physiological functions of mineral macronutrients.Current opinion in plant biology, 12 3
(TakahashiH. (2010). Regulation of sulfate transport and assimilation in plants. Int. Rev. Cell Mol. Biol. 281, 129–159. 10.1016/S1937-6448(10)81004-4, PMID: 20460185)
TakahashiH. (2010). Regulation of sulfate transport and assimilation in plants. Int. Rev. Cell Mol. Biol. 281, 129–159. 10.1016/S1937-6448(10)81004-4, PMID: 20460185TakahashiH. (2010). Regulation of sulfate transport and assimilation in plants. Int. Rev. Cell Mol. Biol. 281, 129–159. 10.1016/S1937-6448(10)81004-4, PMID: 20460185, TakahashiH. (2010). Regulation of sulfate transport and assimilation in plants. Int. Rev. Cell Mol. Biol. 281, 129–159. 10.1016/S1937-6448(10)81004-4, PMID: 20460185
(BournierM.TissotN.MariS.BoucherezJ.LacombeE.BriatJ. F.. (2013). Arabidopsis Ferritin 1 (AtFer1) gene regulation by the Phosphate Starvation Response 1 (AtPHR1) transcription factor reveals a direct molecular link between iron and phosphate homeostasis. J. Biol. Chem. 288, 22670–22680. 10.1074/jbc.M113.482281, PMID: 23788639)
BournierM.TissotN.MariS.BoucherezJ.LacombeE.BriatJ. F.. (2013). Arabidopsis Ferritin 1 (AtFer1) gene regulation by the Phosphate Starvation Response 1 (AtPHR1) transcription factor reveals a direct molecular link between iron and phosphate homeostasis. J. Biol. Chem. 288, 22670–22680. 10.1074/jbc.M113.482281, PMID: 23788639BournierM.TissotN.MariS.BoucherezJ.LacombeE.BriatJ. F.. (2013). Arabidopsis Ferritin 1 (AtFer1) gene regulation by the Phosphate Starvation Response 1 (AtPHR1) transcription factor reveals a direct molecular link between iron and phosphate homeostasis. J. Biol. Chem. 288, 22670–22680. 10.1074/jbc.M113.482281, PMID: 23788639, BournierM.TissotN.MariS.BoucherezJ.LacombeE.BriatJ. F.. (2013). Arabidopsis Ferritin 1 (AtFer1) gene regulation by the Phosphate Starvation Response 1 (AtPHR1) transcription factor reveals a direct molecular link between iron and phosphate homeostasis. J. Biol. Chem. 288, 22670–22680. 10.1074/jbc.M113.482281, PMID: 23788639
Akiko Maruyama-Nakashita, Yumiko Nakamura, T. Yamaya, Hideki Takahashi (2004)
A novel regulatory pathway of sulfate uptake in Arabidopsis roots: implication of CRE1/WOL/AHK4-mediated cytokinin-dependent regulation.The Plant journal : for cell and molecular biology, 38 5
(LeskovaA.GiehlR. F. H.HartmannA.FargasovaA.von WirenN. (2017). Heavy metal induces iron deficiency responses at different hierarchic and regulatory levels. Plant Physiol. 174, 1648–1668. 10.1104/pp.16.01916, PMID: 28500270)
LeskovaA.GiehlR. F. H.HartmannA.FargasovaA.von WirenN. (2017). Heavy metal induces iron deficiency responses at different hierarchic and regulatory levels. Plant Physiol. 174, 1648–1668. 10.1104/pp.16.01916, PMID: 28500270LeskovaA.GiehlR. F. H.HartmannA.FargasovaA.von WirenN. (2017). Heavy metal induces iron deficiency responses at different hierarchic and regulatory levels. Plant Physiol. 174, 1648–1668. 10.1104/pp.16.01916, PMID: 28500270, LeskovaA.GiehlR. F. H.HartmannA.FargasovaA.von WirenN. (2017). Heavy metal induces iron deficiency responses at different hierarchic and regulatory levels. Plant Physiol. 174, 1648–1668. 10.1104/pp.16.01916, PMID: 28500270
Frontiers in Plant Science – Unpaywall
Published: May 10, 2021
You can share this free article with as many people as you like with the url below! We hope you enjoy this feature!
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.