Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Difficulties in Obtaining Reliable Temperature Trends: Reconciling the Surface and Satellite Microwave Sounding Unit Records

Difficulties in Obtaining Reliable Temperature Trends: Reconciling the Surface and Satellite... A chronic difficulty in obtaining reliable climate records from satellites has been changes in instruments, platforms, equator-crossing times, and algorithms. The microwave sounding unit (MSU) tropospheric temperature record has overcome some of these problems, but evidence is presented that it too contains unreliable trends over a 17-yr period (1979––95) because of transitions involving different satellites and complications arising from nonatmospheric signals associated with the surface. The two primary MSU measures of tropospheric temperature contain different error characteristics and trends. The MSU channel 2 record exhibits a slight warming trend since 1979. Its broad vertical weighting function means that the temperature signal originates from throughout the troposphere and part of the lower stratosphere; intersatellite comparisons reveal low noise levels. Off-nadir channel 2 data are combined to provide an adjusted weighting function (called MSU 2R) without the stratospheric signal, but at a cost of an increased influence of surface emissions. Land surface microwave emissions, which account for about 20%% of the total signal, depend on ground temperature and soil moisture and are subject to large variations associated with the diurnal cycle. The result is that MSU 2R noise levels are a factor of 3 larger than for MSU 2 and are sufficient to corrupt trends when several satellite records are merged. After allowing for physical differences between the satellite and surface records, large differences remain in temperature trends over the Tropics where there is a strong and deterministic coupling with the surface. The authors use linear regression with observed sea surface temperatures (SSTs) and an atmospheric general circulation model to relate the tropical MSU and surface datasets. These and alternative analyses of the MSU data, radiosonde data, and comparisons between the MSU 2R and channel 2 records, with estimates of their noise, are used to show that the downward trend in tropical MSU 2R temperatures is very likely spurious. Tropical radiosonde records are of limited use in resolving the discrepancies because of artificial trends arising from changes in instruments or sensors;however, comparisons with Australian radiosondes show a spurious downward jump in MSU 2R in mid-1991, which is not evident in MSU 2. Evaluation of reanalyzed tropical temperatures from the National Centers for Environmental Prediction and the European Centre for Medium-Range Weather Forecasts shows that they contain very different and false trends, as the analyses are only as good as the input database. Statistical analysis of the MSU 2R record objectively identifies two stepwise downward discontinuities that coincide with satellite transitions. The first is in mid-1981, prior to which only one satellite was in operation for much of the time so the diurnal cycle was not well sampled. Tropical SST anomalies over these years were small, in agreement with the Southern Oscillation index, yet the MSU 2R values were anomalously warm by ∼∼0.25°°C. The second transition from NOAA-10 to NOAA-12 in mid-1991 did not involve an overlap except with NOAA-11, which suffered from a large drift in its equator-crossing times. MSU 2R anomalies have remained anomalously cold since mid-1991 by ∼∼0.1°°C. Adding the two stepwise discontinuities to the tropical MSU 2R record allows it to be completely reconciled with the SST record within expected noise levels. The statistical results also make physical sense as the tropical satellite anomalies are magnified relative to SST anomalies by a factor of ∼∼1.3, which is the amplification expected following the saturated adiabatic lapse rate to the level of the peak weighting function of MSU 2R. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Difficulties in Obtaining Reliable Temperature Trends: Reconciling the Surface and Satellite Microwave Sounding Unit Records

Journal of Climate , Volume 11 (5) – Mar 10, 1997

Loading next page...
 
/lp/american-meteorological-society/difficulties-in-obtaining-reliable-temperature-trends-reconciling-the-wUGPW6rjjf

References (71)

Publisher
American Meteorological Society
Copyright
Copyright © 1997 American Meteorological Society
ISSN
1520-0442
DOI
10.1175/1520-0442(1998)011<0945:DIORTT>2.0.CO;2
Publisher site
See Article on Publisher Site

Abstract

A chronic difficulty in obtaining reliable climate records from satellites has been changes in instruments, platforms, equator-crossing times, and algorithms. The microwave sounding unit (MSU) tropospheric temperature record has overcome some of these problems, but evidence is presented that it too contains unreliable trends over a 17-yr period (1979––95) because of transitions involving different satellites and complications arising from nonatmospheric signals associated with the surface. The two primary MSU measures of tropospheric temperature contain different error characteristics and trends. The MSU channel 2 record exhibits a slight warming trend since 1979. Its broad vertical weighting function means that the temperature signal originates from throughout the troposphere and part of the lower stratosphere; intersatellite comparisons reveal low noise levels. Off-nadir channel 2 data are combined to provide an adjusted weighting function (called MSU 2R) without the stratospheric signal, but at a cost of an increased influence of surface emissions. Land surface microwave emissions, which account for about 20%% of the total signal, depend on ground temperature and soil moisture and are subject to large variations associated with the diurnal cycle. The result is that MSU 2R noise levels are a factor of 3 larger than for MSU 2 and are sufficient to corrupt trends when several satellite records are merged. After allowing for physical differences between the satellite and surface records, large differences remain in temperature trends over the Tropics where there is a strong and deterministic coupling with the surface. The authors use linear regression with observed sea surface temperatures (SSTs) and an atmospheric general circulation model to relate the tropical MSU and surface datasets. These and alternative analyses of the MSU data, radiosonde data, and comparisons between the MSU 2R and channel 2 records, with estimates of their noise, are used to show that the downward trend in tropical MSU 2R temperatures is very likely spurious. Tropical radiosonde records are of limited use in resolving the discrepancies because of artificial trends arising from changes in instruments or sensors;however, comparisons with Australian radiosondes show a spurious downward jump in MSU 2R in mid-1991, which is not evident in MSU 2. Evaluation of reanalyzed tropical temperatures from the National Centers for Environmental Prediction and the European Centre for Medium-Range Weather Forecasts shows that they contain very different and false trends, as the analyses are only as good as the input database. Statistical analysis of the MSU 2R record objectively identifies two stepwise downward discontinuities that coincide with satellite transitions. The first is in mid-1981, prior to which only one satellite was in operation for much of the time so the diurnal cycle was not well sampled. Tropical SST anomalies over these years were small, in agreement with the Southern Oscillation index, yet the MSU 2R values were anomalously warm by ∼∼0.25°°C. The second transition from NOAA-10 to NOAA-12 in mid-1991 did not involve an overlap except with NOAA-11, which suffered from a large drift in its equator-crossing times. MSU 2R anomalies have remained anomalously cold since mid-1991 by ∼∼0.1°°C. Adding the two stepwise discontinuities to the tropical MSU 2R record allows it to be completely reconciled with the SST record within expected noise levels. The statistical results also make physical sense as the tropical satellite anomalies are magnified relative to SST anomalies by a factor of ∼∼1.3, which is the amplification expected following the saturated adiabatic lapse rate to the level of the peak weighting function of MSU 2R.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Mar 10, 1997

There are no references for this article.