Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Bacterially expressed dsRNA protects maize against SCMV infection

Bacterially expressed dsRNA protects maize against SCMV infection RNA interference (RNAi) is a sequence-specific, posttranscriptional gene silencing (PTGS) process in plants that is mediated by dsRNA homologous to the silenced gene(s). In this study, we report an efficient method to produce dsRNA using a bacterial expression system. Two fragments of the Sugarcane Mosaic Virus (SCMV) CP (coat protein) gene were amplified by RT-PCR, and cloned into the inverted-repeat cloning vector pUCCRNAi. The two recombinant plasmids were transformed individually into E. coli HT115, an RNase-III deficient strain, and dsRNA was induced by isopropyl-β- d -thiogalactopyranoside (IPTG). The crude extracts of E. coli HT115 containing large amounts of dsRNA were applied to plants as a spray and the experiment confirmed a preventative efficacy. Our findings demonstrated that spraying crude dsRNA-containing extracts inhibited SCMV infection, and the dsRNA derived from an upstream region (CP1) was more effective than was dsRNA derived from a downstream region (CP2) of the SCMV CP gene. The results provide a valuable tool for plant viral control using dsRNA and the PTGS approach. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Cell Reports Springer Journals

Bacterially expressed dsRNA protects maize against SCMV infection

Loading next page...
 
/lp/springer-journals/bacterially-expressed-dsrna-protects-maize-against-scmv-infection-uPr6te8RWE

References (41)

Publisher
Springer Journals
Copyright
Copyright © 2010 by Springer-Verlag
Subject
Life Sciences; Plant Biochemistry; Biotechnology; Plant Sciences ; Cell Biology
ISSN
0721-7714
eISSN
1432-203X
DOI
10.1007/s00299-010-0911-z
pmid
20734050
Publisher site
See Article on Publisher Site

Abstract

RNA interference (RNAi) is a sequence-specific, posttranscriptional gene silencing (PTGS) process in plants that is mediated by dsRNA homologous to the silenced gene(s). In this study, we report an efficient method to produce dsRNA using a bacterial expression system. Two fragments of the Sugarcane Mosaic Virus (SCMV) CP (coat protein) gene were amplified by RT-PCR, and cloned into the inverted-repeat cloning vector pUCCRNAi. The two recombinant plasmids were transformed individually into E. coli HT115, an RNase-III deficient strain, and dsRNA was induced by isopropyl-β- d -thiogalactopyranoside (IPTG). The crude extracts of E. coli HT115 containing large amounts of dsRNA were applied to plants as a spray and the experiment confirmed a preventative efficacy. Our findings demonstrated that spraying crude dsRNA-containing extracts inhibited SCMV infection, and the dsRNA derived from an upstream region (CP1) was more effective than was dsRNA derived from a downstream region (CP2) of the SCMV CP gene. The results provide a valuable tool for plant viral control using dsRNA and the PTGS approach.

Journal

Plant Cell ReportsSpringer Journals

Published: Nov 1, 2010

There are no references for this article.