Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Predicting the oceanic input of organic carbon by continental erosion

Predicting the oceanic input of organic carbon by continental erosion For a large set of major world rivers we established the empirical relations existing between the observed organic carbon fluxes and the climatic, biologic, and geomorphologic patterns characterizing the river basins. These characteristics were extracted from various ecological databases. The corresponding carbon fluxes were taken from the literature. Dissolved organic carbon fluxes are mainly related to drainage intensity, basin slope, and the amount of carbon stored in soils. Particulate organic carbon fluxes are calculated as a function of sediment fluxes, which depend principally upon drainage intensity, rainfall intensity, and basin slope. Although the drainage intensity is mainly related to the amount of precipitation and to mean temperature in the basin, slope is also retained as one of the controlling factors. Our empirical models result in a total organic carbon flux to the oceans of about 0.38 Gt per year globally. About 0.21 Gt carbon (Gt C) enter the oceans in dissolved form and about 0.17 Gt C in particulate form. We further regionalize fluxes with respect to major climates, different continents, and different ocean basins. About 45 % of the organic carbon is discharged from tropical wet regions. The major part of the dissolved organic carbon is discharged into the Atlantic Ocean, while the bulk of the particulate organic carbon is discharged into the Indian and Pacific Oceans. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Global Biogeochemical Cycles Wiley

Predicting the oceanic input of organic carbon by continental erosion

Loading next page...
 
/lp/wiley/predicting-the-oceanic-input-of-organic-carbon-by-continental-erosion-uPehhQi5W7

References (69)

Publisher
Wiley
Copyright
Copyright © 1996 by the American Geophysical Union.
ISSN
0886-6236
eISSN
1944-9224
DOI
10.1029/95GB02925
Publisher site
See Article on Publisher Site

Abstract

For a large set of major world rivers we established the empirical relations existing between the observed organic carbon fluxes and the climatic, biologic, and geomorphologic patterns characterizing the river basins. These characteristics were extracted from various ecological databases. The corresponding carbon fluxes were taken from the literature. Dissolved organic carbon fluxes are mainly related to drainage intensity, basin slope, and the amount of carbon stored in soils. Particulate organic carbon fluxes are calculated as a function of sediment fluxes, which depend principally upon drainage intensity, rainfall intensity, and basin slope. Although the drainage intensity is mainly related to the amount of precipitation and to mean temperature in the basin, slope is also retained as one of the controlling factors. Our empirical models result in a total organic carbon flux to the oceans of about 0.38 Gt per year globally. About 0.21 Gt carbon (Gt C) enter the oceans in dissolved form and about 0.17 Gt C in particulate form. We further regionalize fluxes with respect to major climates, different continents, and different ocean basins. About 45 % of the organic carbon is discharged from tropical wet regions. The major part of the dissolved organic carbon is discharged into the Atlantic Ocean, while the bulk of the particulate organic carbon is discharged into the Indian and Pacific Oceans.

Journal

Global Biogeochemical CyclesWiley

Published: Mar 1, 1996

There are no references for this article.