Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Leukocytes, cytokines, growth factors and hormones in human skeletal muscle and blood after uphill or downhill running

Leukocytes, cytokines, growth factors and hormones in human skeletal muscle and blood after... Muscular adaptation to physical exercise has previously been described as a repair process following tissue damage. Recently, evidence has been published to question this hypothesis. The purpose of this study was to investigate inflammatory processes in human skeletal muscle and epimysium after acute physical exercise with large eccentric components. Three groups of subjects (n= 19) performed 45 min treadmill running at either 4 deg (n= 5) or 8 deg (n= 9) downhill or 4 deg uphill (n= 5) and one group served as control (n= 9). One biopsy was taken from each subject 48 h post exercise. Blood samples were taken up to 7 days post exercise. Compared to the control group, none of the markers of inflammation in muscle and epimysium samples was different in any exercised group. Only subjects in the Downhill groups experienced delayed onset of muscle soreness (DOMS) and increased serum creatine kinase activity (CK). The detected levels of immunohistochemical markers for T cells (CD3), granulocytes (CD11b), leukaemia inhibitory factor (LIF) and hypoxia‐inducible factor 1β (HIF‐1β) were greater in epimysium from exercised subjects with DOMS ratings >3 (0–10 scale) compared to exercised subjects without DOMS but not higher than controls. Eccentric physical exercise (downhill running) did not result in skeletal muscle inflammation 48 h post exercise, despite DOMS and increased CK. It is suggested that exercise can induce DOMS by activating inflammatory factors present in the epimysium before exercise. Repeated physical training may alter the content of inflammatory factors in the epimysium and thus reduce DOMS. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Physiology Wiley

Leukocytes, cytokines, growth factors and hormones in human skeletal muscle and blood after uphill or downhill running

Loading next page...
 
/lp/wiley/leukocytes-cytokines-growth-factors-and-hormones-in-human-skeletal-tVXTHoVWwI

References (44)

Publisher
Wiley
Copyright
Copyright © 2004 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0022-3751
eISSN
1469-7793
DOI
10.1113/jphysiol.2003.056598
pmid
14766942
Publisher site
See Article on Publisher Site

Abstract

Muscular adaptation to physical exercise has previously been described as a repair process following tissue damage. Recently, evidence has been published to question this hypothesis. The purpose of this study was to investigate inflammatory processes in human skeletal muscle and epimysium after acute physical exercise with large eccentric components. Three groups of subjects (n= 19) performed 45 min treadmill running at either 4 deg (n= 5) or 8 deg (n= 9) downhill or 4 deg uphill (n= 5) and one group served as control (n= 9). One biopsy was taken from each subject 48 h post exercise. Blood samples were taken up to 7 days post exercise. Compared to the control group, none of the markers of inflammation in muscle and epimysium samples was different in any exercised group. Only subjects in the Downhill groups experienced delayed onset of muscle soreness (DOMS) and increased serum creatine kinase activity (CK). The detected levels of immunohistochemical markers for T cells (CD3), granulocytes (CD11b), leukaemia inhibitory factor (LIF) and hypoxia‐inducible factor 1β (HIF‐1β) were greater in epimysium from exercised subjects with DOMS ratings >3 (0–10 scale) compared to exercised subjects without DOMS but not higher than controls. Eccentric physical exercise (downhill running) did not result in skeletal muscle inflammation 48 h post exercise, despite DOMS and increased CK. It is suggested that exercise can induce DOMS by activating inflammatory factors present in the epimysium before exercise. Repeated physical training may alter the content of inflammatory factors in the epimysium and thus reduce DOMS.

Journal

The Journal of PhysiologyWiley

Published: May 1, 2004

There are no references for this article.