Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Nitrogen pools and fluxes in grassland soils sequestering carbon

Nitrogen pools and fluxes in grassland soils sequestering carbon Carbon sequestration in agricultural, forest, and grassland soils has been promoted as a means by which substantial amounts of CO2 may be removed from the atmosphere, but few studies have evaluated the associated impacts on changes in soil N or net global warming potential (GWP). The purpose of this research was to (1) review the literature to examine how changes in grassland management that affect soil C also impact soil N, (2) assess the impact of different types of grassland management on changes in soil N and rates of change, and (3) evaluate changes in N2O fluxes from differently managed grassland ecosystems to assess net impacts on GWP. Soil C and N stocks either both increased or both decreased for most studies. Soil C and N sequestration were tightly linked, resulting in little change in C:N ratios with changes in management. Within grazing treatments N2O made a minor contribution to GWP (0.1–4%), but increases in N2O fluxes offset significant portions of C sequestration gains due to fertilization (10–125%) and conversion (average = 27%). Results from this work demonstrate that even when improved management practices result in considerable rates of C and N sequestration, changes in N2O fluxes can offset a substantial portion of gains by C sequestration. Even for cases in which C sequestration rates are not entirely offset by increases in N2O fluxes, small increases in N2O fluxes can substantially reduce C sequestration benefits. Conversely, reduction of N2O fluxes in grassland soils brought about by changes in management represents an opportunity to reduce the contribution of grasslands to net greenhouse gas forcing. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nutrient Cycling in Agroecosystems Springer Journals

Nitrogen pools and fluxes in grassland soils sequestering carbon

Loading next page...
 
/lp/springer-journals/nitrogen-pools-and-fluxes-in-grassland-soils-sequestering-carbon-stDO0ekRlm

References (53)

Publisher
Springer Journals
Copyright
Copyright © 2005 by Springer
Subject
Environment; Soil Science & Conservation
ISSN
1385-1314
eISSN
1573-0867
DOI
10.1007/s10705-004-5085-z
Publisher site
See Article on Publisher Site

Abstract

Carbon sequestration in agricultural, forest, and grassland soils has been promoted as a means by which substantial amounts of CO2 may be removed from the atmosphere, but few studies have evaluated the associated impacts on changes in soil N or net global warming potential (GWP). The purpose of this research was to (1) review the literature to examine how changes in grassland management that affect soil C also impact soil N, (2) assess the impact of different types of grassland management on changes in soil N and rates of change, and (3) evaluate changes in N2O fluxes from differently managed grassland ecosystems to assess net impacts on GWP. Soil C and N stocks either both increased or both decreased for most studies. Soil C and N sequestration were tightly linked, resulting in little change in C:N ratios with changes in management. Within grazing treatments N2O made a minor contribution to GWP (0.1–4%), but increases in N2O fluxes offset significant portions of C sequestration gains due to fertilization (10–125%) and conversion (average = 27%). Results from this work demonstrate that even when improved management practices result in considerable rates of C and N sequestration, changes in N2O fluxes can offset a substantial portion of gains by C sequestration. Even for cases in which C sequestration rates are not entirely offset by increases in N2O fluxes, small increases in N2O fluxes can substantially reduce C sequestration benefits. Conversely, reduction of N2O fluxes in grassland soils brought about by changes in management represents an opportunity to reduce the contribution of grasslands to net greenhouse gas forcing.

Journal

Nutrient Cycling in AgroecosystemsSpringer Journals

Published: Oct 12, 2004

There are no references for this article.