Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Vesicular release of ATP at central synapses

Vesicular release of ATP at central synapses Adenosine triphosphate (ATP) acts as a fast excitatory transmitter in several regions of the central nervous system (CNS) including the medial habenula, dorsal horn, locus coeruleus, hippocampus, and somatosensory cortex. Postsynaptic actions of ATP are mediated through an extended family of P2X receptors, widely expressed throughout the CNS. ATP is released via several pathways, including exocytosis from presynaptic terminals and diffusion through large transmembrane pores (e.g., hemichannels, P2X7 receptors, or volume-sensitive chloride channels) expressed in astroglial membranes. In presynaptic terminals, ATP is accumulated and stored in the synaptic vesicles. In different presynaptic terminals, these vesicles may contain ATP only or ATP and another neurotransmitter [e.g., γ-amino-butyric acid (GABA) or glutamate]; in the latter case, two transmitters can be coreleased. Here, we discuss the mechanisms of vesicular release of ATP in the CNS and present our own data, which indicate that in central neuronal terminals, ATP is primarily stored and released from distinct pool of vesicles; the release of ATP is not synchronized either with GABA or with glutamate. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Pflügers Archiv European Journal of Physiologyl of Physiology Springer Journals

Loading next page...
 
/lp/springer-journals/vesicular-release-of-atp-at-central-synapses-sMEpFGIMWJ

References (69)

Publisher
Springer Journals
Copyright
Copyright © 2006 by Springer-Verlag
Subject
Biomedicine; Human Physiology
ISSN
0031-6768
eISSN
1432-2013
DOI
10.1007/s00424-006-0061-x
pmid
16639550
Publisher site
See Article on Publisher Site

Abstract

Adenosine triphosphate (ATP) acts as a fast excitatory transmitter in several regions of the central nervous system (CNS) including the medial habenula, dorsal horn, locus coeruleus, hippocampus, and somatosensory cortex. Postsynaptic actions of ATP are mediated through an extended family of P2X receptors, widely expressed throughout the CNS. ATP is released via several pathways, including exocytosis from presynaptic terminals and diffusion through large transmembrane pores (e.g., hemichannels, P2X7 receptors, or volume-sensitive chloride channels) expressed in astroglial membranes. In presynaptic terminals, ATP is accumulated and stored in the synaptic vesicles. In different presynaptic terminals, these vesicles may contain ATP only or ATP and another neurotransmitter [e.g., γ-amino-butyric acid (GABA) or glutamate]; in the latter case, two transmitters can be coreleased. Here, we discuss the mechanisms of vesicular release of ATP in the CNS and present our own data, which indicate that in central neuronal terminals, ATP is primarily stored and released from distinct pool of vesicles; the release of ATP is not synchronized either with GABA or with glutamate.

Journal

Pflügers Archiv European Journal of Physiologyl of PhysiologySpringer Journals

Published: Apr 26, 2006

There are no references for this article.