Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Effects of low concentrations of 4-aminopyridine on CA1 pyramidal cells of the hippocampus

Effects of low concentrations of 4-aminopyridine on CA1 pyramidal cells of the hippocampus Abstract 1. Intracellular and extracellular recording techniques were used to study the effects of bath application of 4-aminopyridine (4-AP) on pyramidal cells of the CA1 subfield of rat hippocampal slices maintained in vitro. The concentration of 4-AP used in most experiments was 50 microM. However, similar results were obtained with a concentration ranging from 5 to 100 microM. 2. Following 4-AP application, cells impaled with K-acetate-filled microelectrodes hyperpolarized by an average of 2.6 mV (from -68.7 to -71.3 mV, P less than or equal to 0.01). This change was accompanied by the appearance of high-frequency spontaneous hyperpolarizations. Conversely, when KCl-filled microelectrodes were used, an average depolarization of 5.8 mV from -73.1 to -67.3 mV, not significant (NS) associated with the occurrence of repetitive depolarizing potentials was observed. In both cases, these changes were concomitant with a small decrease in membrane input resistance, which was statistically significant only for cells impaled with K-acetate-filled microelectrodes. When synaptic transmission was blocked by tetrodotoxin (TTX), 4-AP induced in cells studied with K-acetate microelectrodes an average depolarization of 2.4 mV (from -62.8 to -60.4 mV, P less than or equal to 0.01) accompanied by a small increase in input resistance (from 32.0 to 35.8 M omega, P less than or equal to 0.05). High-frequency spontaneous potentials failed to occur under these conditions. During 4-AP application, the threshold and the latency of action potentials elicited by a depolarizing current pulse increased in 36% of the neurons studied (n = 14). 3. The amplitude of the stratum (s.) radiatum-induced excitatory postsynaptic potential (EPSP) was augmented by 4-AP. Both the early and late inhibitory postsynaptic potentials (IPSPs) evoked by orthodromic stimuli were also increased in amplitude and duration. In addition, a late (peak latency, 150-600 ms) and long-lasting (duration, 600-1,500 ms) depolarizing potential appeared between the early and the late IPSPs and progressively increased until it partially masked these hyperpolarizations. This long-lasting depolarization (LLD) could also be induced by antidromic stimulation, although in this case it was preceded by an additional, fast-rising, brief depolarization. 4. A similar brief depolarization preceded the orthodromically induced LLD in 69% of the neurons bathed in the presence of 4-AP. The average value of the peak latency of this potential was 62 +/- 27 (SD) ms for orthodromic and 110 +/- 70 ms for antidromic responses.(ABSTRACT TRUNCATED AT 400 WORDS) Copyright © 1989 the American Physiological Society http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Neurophysiology The American Physiological Society

Effects of low concentrations of 4-aminopyridine on CA1 pyramidal cells of the hippocampus

Journal of Neurophysiology , Volume 61 (5): 953 – May 1, 1989

Loading next page...
 
/lp/the-american-physiological-society/effects-of-low-concentrations-of-4-aminopyridine-on-ca1-pyramidal-r1QHtTMSiY

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
The American Physiological Society
Copyright
Copyright © 1989 the American Physiological Society
ISSN
0022-3077
eISSN
1522-1598
Publisher site
See Article on Publisher Site

Abstract

Abstract 1. Intracellular and extracellular recording techniques were used to study the effects of bath application of 4-aminopyridine (4-AP) on pyramidal cells of the CA1 subfield of rat hippocampal slices maintained in vitro. The concentration of 4-AP used in most experiments was 50 microM. However, similar results were obtained with a concentration ranging from 5 to 100 microM. 2. Following 4-AP application, cells impaled with K-acetate-filled microelectrodes hyperpolarized by an average of 2.6 mV (from -68.7 to -71.3 mV, P less than or equal to 0.01). This change was accompanied by the appearance of high-frequency spontaneous hyperpolarizations. Conversely, when KCl-filled microelectrodes were used, an average depolarization of 5.8 mV from -73.1 to -67.3 mV, not significant (NS) associated with the occurrence of repetitive depolarizing potentials was observed. In both cases, these changes were concomitant with a small decrease in membrane input resistance, which was statistically significant only for cells impaled with K-acetate-filled microelectrodes. When synaptic transmission was blocked by tetrodotoxin (TTX), 4-AP induced in cells studied with K-acetate microelectrodes an average depolarization of 2.4 mV (from -62.8 to -60.4 mV, P less than or equal to 0.01) accompanied by a small increase in input resistance (from 32.0 to 35.8 M omega, P less than or equal to 0.05). High-frequency spontaneous potentials failed to occur under these conditions. During 4-AP application, the threshold and the latency of action potentials elicited by a depolarizing current pulse increased in 36% of the neurons studied (n = 14). 3. The amplitude of the stratum (s.) radiatum-induced excitatory postsynaptic potential (EPSP) was augmented by 4-AP. Both the early and late inhibitory postsynaptic potentials (IPSPs) evoked by orthodromic stimuli were also increased in amplitude and duration. In addition, a late (peak latency, 150-600 ms) and long-lasting (duration, 600-1,500 ms) depolarizing potential appeared between the early and the late IPSPs and progressively increased until it partially masked these hyperpolarizations. This long-lasting depolarization (LLD) could also be induced by antidromic stimulation, although in this case it was preceded by an additional, fast-rising, brief depolarization. 4. A similar brief depolarization preceded the orthodromically induced LLD in 69% of the neurons bathed in the presence of 4-AP. The average value of the peak latency of this potential was 62 +/- 27 (SD) ms for orthodromic and 110 +/- 70 ms for antidromic responses.(ABSTRACT TRUNCATED AT 400 WORDS) Copyright © 1989 the American Physiological Society

Journal

Journal of NeurophysiologyThe American Physiological Society

Published: May 1, 1989

There are no references for this article.