Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Modeling the routing and spectrum allocation problem for flexgrid optical networks

Modeling the routing and spectrum allocation problem for flexgrid optical networks Flexgrid optical networks are attracting huge interest due to their higher spectrum efficiency and flexibility in comparison with traditional wavelength switched optical networks based on the wavelength division multiplexing technology. To properly analyze, design, plan, and operate flexible and elastic networks, efficient methods are required for the routing and spectrum allocation (RSA) problem. Specifically, the allocated spectral resources must be, in absence of spectrum converters, the same along the links in the route (the continuity constraint) and contiguous in the spectrum (the contiguity constraint). In light of the fact that the contiguity constraint adds huge complexity to the RSA problem, we introduce the concept of channels for the representation of contiguous spectral resources. In this paper, we show that the use of a pre-computed set of channels allows considerably reducing the problem complexity. In our study, we address an off-line RSA problem in which enough spectrum needs to be allocated for each demand of a given traffic matrix. To this end, we present novel integer lineal programming (ILP) formulations of RSA that are based on the assignment of channels. The evaluation results reveal that the proposed approach allows solving the RSA problem much more efficiently than previously proposed ILP-based methods and it can be applied even for realistic problem instances, contrary to previous ILP formulations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Modeling the routing and spectrum allocation problem for flexgrid optical networks

Loading next page...
 
/lp/springer-journals/modeling-the-routing-and-spectrum-allocation-problem-for-flexgrid-qPzuenQCBJ

References (17)

Publisher
Springer Journals
Copyright
Copyright © 2012 by Springer Science+Business Media, LLC
Subject
Computer Science; Electrical Engineering; Computer Communication Networks; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
DOI
10.1007/s11107-012-0378-7
Publisher site
See Article on Publisher Site

Abstract

Flexgrid optical networks are attracting huge interest due to their higher spectrum efficiency and flexibility in comparison with traditional wavelength switched optical networks based on the wavelength division multiplexing technology. To properly analyze, design, plan, and operate flexible and elastic networks, efficient methods are required for the routing and spectrum allocation (RSA) problem. Specifically, the allocated spectral resources must be, in absence of spectrum converters, the same along the links in the route (the continuity constraint) and contiguous in the spectrum (the contiguity constraint). In light of the fact that the contiguity constraint adds huge complexity to the RSA problem, we introduce the concept of channels for the representation of contiguous spectral resources. In this paper, we show that the use of a pre-computed set of channels allows considerably reducing the problem complexity. In our study, we address an off-line RSA problem in which enough spectrum needs to be allocated for each demand of a given traffic matrix. To this end, we present novel integer lineal programming (ILP) formulations of RSA that are based on the assignment of channels. The evaluation results reveal that the proposed approach allows solving the RSA problem much more efficiently than previously proposed ILP-based methods and it can be applied even for realistic problem instances, contrary to previous ILP formulations.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Apr 27, 2012

There are no references for this article.