Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Role of Endogenous Cannabinoids in Synaptic Signaling

Role of Endogenous Cannabinoids in Synaptic Signaling Freund, Tamás F., István Katona, and Daniele Piomelli. Role of Endogenous Cannabinoids in Synaptic Signaling. Physiol Rev 83: 1017–1066, 2003; 10.1152/physrev.00004.2003.—Research of cannabinoid actions was boosted in the 1990s by remarkable discoveries including identification of endogenous compounds with cannabimimetic activity (endocannabinoids) and the cloning of their molecular targets, the CB 1 and CB 2 receptors. Although the existence of an endogenous cannabinoid signaling system has been established for a decade, its physiological roles have just begun to unfold. In addition, the behavioral effects of exogenous cannabinoids such as delta-9-tetrahydrocannabinol, the major active compound of hashish and marijuana, await explanation at the cellular and network levels. Recent physiological, pharmacological, and high-resolution anatomical studies provided evidence that the major physiological effect of cannabinoids is the regulation of neurotransmitter release via activation of presynaptic CB 1 receptors located on distinct types of axon terminals throughout the brain. Subsequent discoveries shed light on the functional consequences of this localization by demonstrating the involvement of endocannabinoids in retrograde signaling at GABAergic and glutamatergic synapses. In this review, we aim to synthesize recent progress in our understanding of the physiological roles of endocannabinoids in the brain. First, the synthetic pathways of endocannabinoids are discussed, along with the putative mechanisms of their release, uptake, and degradation. The fine-grain anatomical distribution of the neuronal cannabinoid receptor CB 1 is described in most brain areas, emphasizing its general presynaptic localization and role in controlling neurotransmitter release. Finally, the possible functions of endocannabinoids as retrograde synaptic signal molecules are discussed in relation to synaptic plasticity and network activity patterns. Address for reprint requests and other correspondence: T. F. Freund, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest 8, Szigony u.43, H-1083 Hungary (E-mail: freund@koki.hu ). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physiological Reviews The American Physiological Society

Role of Endogenous Cannabinoids in Synaptic Signaling

Loading next page...
 
/lp/the-american-physiological-society/role-of-endogenous-cannabinoids-in-synaptic-signaling-pAhJjhENJp

References (464)

Publisher
The American Physiological Society
Copyright
Copyright © 2011 the American Physiological Society
ISSN
0031-9333
eISSN
1522-1210
DOI
10.1152/physrev.00004.2003
pmid
12843414
Publisher site
See Article on Publisher Site

Abstract

Freund, Tamás F., István Katona, and Daniele Piomelli. Role of Endogenous Cannabinoids in Synaptic Signaling. Physiol Rev 83: 1017–1066, 2003; 10.1152/physrev.00004.2003.—Research of cannabinoid actions was boosted in the 1990s by remarkable discoveries including identification of endogenous compounds with cannabimimetic activity (endocannabinoids) and the cloning of their molecular targets, the CB 1 and CB 2 receptors. Although the existence of an endogenous cannabinoid signaling system has been established for a decade, its physiological roles have just begun to unfold. In addition, the behavioral effects of exogenous cannabinoids such as delta-9-tetrahydrocannabinol, the major active compound of hashish and marijuana, await explanation at the cellular and network levels. Recent physiological, pharmacological, and high-resolution anatomical studies provided evidence that the major physiological effect of cannabinoids is the regulation of neurotransmitter release via activation of presynaptic CB 1 receptors located on distinct types of axon terminals throughout the brain. Subsequent discoveries shed light on the functional consequences of this localization by demonstrating the involvement of endocannabinoids in retrograde signaling at GABAergic and glutamatergic synapses. In this review, we aim to synthesize recent progress in our understanding of the physiological roles of endocannabinoids in the brain. First, the synthetic pathways of endocannabinoids are discussed, along with the putative mechanisms of their release, uptake, and degradation. The fine-grain anatomical distribution of the neuronal cannabinoid receptor CB 1 is described in most brain areas, emphasizing its general presynaptic localization and role in controlling neurotransmitter release. Finally, the possible functions of endocannabinoids as retrograde synaptic signal molecules are discussed in relation to synaptic plasticity and network activity patterns. Address for reprint requests and other correspondence: T. F. Freund, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest 8, Szigony u.43, H-1083 Hungary (E-mail: freund@koki.hu ).

Journal

Physiological ReviewsThe American Physiological Society

Published: Jul 1, 2003

There are no references for this article.