Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Does the photosynthetic light‐acclimation need change in leaf anatomy?

Does the photosynthetic light‐acclimation need change in leaf anatomy? ABSTRACT There is a strong correlation between leaf thickness and the light‐saturated rate of photosynthesis per unit leaf area (Pmax). However, when leaves are exposed to higher light intensities after maturation, Pmax often increases without increasing leaf thickness. To elucidate the mechanism with which mature leaves increase Pmax, the change in anatomical and physiological characteristics of mature leaves of Chenopodium album, which was transferred from low to high light condition, were examined. When compared with leaves subjected to low light continuously (LL leaves), the leaves transferred from low to high light (LH leaves) significantly increased Pmax. The transfer also increased the area of chloroplasts facing the intercellular space (Sc) and maintained a strong correlation between Pmax and Sc. The mesophyll cells of LL leaves had open spaces along cell walls where chloroplasts were absent, which enabled the leaves to increase Pmax when they were exposed to high light (LH). However, the LH leaves were not thick enough to allow further increase in Pmax to the level in HH leaves. Thus leaf thickness determines an upper limit of Pmax of leaves subjected to a change from low to high light conditions. Shade leaves would only increase Pmax when they have open space to accommodate chloroplasts which elongate after light conditions improve. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Cell & Environment Wiley

Does the photosynthetic light‐acclimation need change in leaf anatomy?

Plant Cell & Environment , Volume 26 (4) – Apr 1, 2003

Loading next page...
 
/lp/wiley/does-the-photosynthetic-light-acclimation-need-change-in-leaf-anatomy-oGvm2qgfWo

References (43)

Publisher
Wiley
Copyright
Copyright © 2003 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0140-7791
eISSN
1365-3040
DOI
10.1046/j.1365-3040.2003.00981.x
Publisher site
See Article on Publisher Site

Abstract

ABSTRACT There is a strong correlation between leaf thickness and the light‐saturated rate of photosynthesis per unit leaf area (Pmax). However, when leaves are exposed to higher light intensities after maturation, Pmax often increases without increasing leaf thickness. To elucidate the mechanism with which mature leaves increase Pmax, the change in anatomical and physiological characteristics of mature leaves of Chenopodium album, which was transferred from low to high light condition, were examined. When compared with leaves subjected to low light continuously (LL leaves), the leaves transferred from low to high light (LH leaves) significantly increased Pmax. The transfer also increased the area of chloroplasts facing the intercellular space (Sc) and maintained a strong correlation between Pmax and Sc. The mesophyll cells of LL leaves had open spaces along cell walls where chloroplasts were absent, which enabled the leaves to increase Pmax when they were exposed to high light (LH). However, the LH leaves were not thick enough to allow further increase in Pmax to the level in HH leaves. Thus leaf thickness determines an upper limit of Pmax of leaves subjected to a change from low to high light conditions. Shade leaves would only increase Pmax when they have open space to accommodate chloroplasts which elongate after light conditions improve.

Journal

Plant Cell & EnvironmentWiley

Published: Apr 1, 2003

There are no references for this article.