Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

AtCPK1 calcium‐dependent protein kinase mediates pathogen resistance in Arabidopsis

AtCPK1 calcium‐dependent protein kinase mediates pathogen resistance in Arabidopsis In mammals, lipid bodies play a key role during pathological and infectious diseases. However, our knowledge on the function of plant lipid bodies, apart from their role as the major site of lipid storage in seed tissues, remains limited. Here, we provide evidence that a calcium‐dependent protein kinase (CPK) mediates pathogen resistance in Arabidopsis. AtCPK1 expression is rapidly induced by fungal elicitors. Loss‐of‐function mutants of AtCPK1 exhibit higher susceptibility to pathogen infection compared to wild‐type plants. Conversely, over‐expression of AtCPK1 leads to accumulation of salicylic acid (SA) and constitutive expression of SA‐regulated defence and disease resistance genes, which, in turn, results in broad‐spectrum protection against pathogen infection. Expression studies in mutants affected in SA‐mediated defence responses revealed an interlocked feedback loop governing AtCPK1 expression and components of the SA‐dependent signalling pathway. Moreover, we demonstrate the dual localization of AtCPK1 in lipid bodies and peroxisomes. Overall, our findings identify AtCPK1 as a component of the innate immune system of Arabidopsis plants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Plant Journal Wiley

AtCPK1 calcium‐dependent protein kinase mediates pathogen resistance in Arabidopsis

The Plant Journal , Volume 63 (3) – Aug 1, 2010

Loading next page...
 
/lp/wiley/atcpk1-calcium-dependent-protein-kinase-mediates-pathogen-resistance-nm0RpRzSTx

References (71)

Publisher
Wiley
Copyright
Copyright © 2010 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0960-7412
eISSN
1365-313X
DOI
10.1111/j.1365-313X.2010.04255.x
pmid
20497373
Publisher site
See Article on Publisher Site

Abstract

In mammals, lipid bodies play a key role during pathological and infectious diseases. However, our knowledge on the function of plant lipid bodies, apart from their role as the major site of lipid storage in seed tissues, remains limited. Here, we provide evidence that a calcium‐dependent protein kinase (CPK) mediates pathogen resistance in Arabidopsis. AtCPK1 expression is rapidly induced by fungal elicitors. Loss‐of‐function mutants of AtCPK1 exhibit higher susceptibility to pathogen infection compared to wild‐type plants. Conversely, over‐expression of AtCPK1 leads to accumulation of salicylic acid (SA) and constitutive expression of SA‐regulated defence and disease resistance genes, which, in turn, results in broad‐spectrum protection against pathogen infection. Expression studies in mutants affected in SA‐mediated defence responses revealed an interlocked feedback loop governing AtCPK1 expression and components of the SA‐dependent signalling pathway. Moreover, we demonstrate the dual localization of AtCPK1 in lipid bodies and peroxisomes. Overall, our findings identify AtCPK1 as a component of the innate immune system of Arabidopsis plants.

Journal

The Plant JournalWiley

Published: Aug 1, 2010

Keywords: ; ; ; ; ;

There are no references for this article.