Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Genetic transformation and biotechnological application of the yeast Arxula adeninivorans

Genetic transformation and biotechnological application of the yeast Arxula adeninivorans The relatively unknown, non-pathogenic, dimorphic, haploid, ascomycetous yeast Arxula adeninivorans exhibits some unusual properties which are of biotechnological interest. The yeast is able to assimilate and ferment many compounds as sole source of carbon and/or nitrogen, it utilises n-alkanes and degrades starch efficiently. A. adeninivorans features such as thermo- and haloresistance as well as the yeast's uncommon growth and secretion behaviour should be especially emphasised. In media containing up to 20% NaCl, A. adeninivorans is able to grow at cultivation temperatures up to 48 °C. Additionally, the dimorphism of the yeast is unusual. Arxula grows at up temperatures of up to 42 °C as budding cells, which turn into mycelia at higher temperatures. This environmentally conditioned dimorphism is reversible and budding is reestablished when the cultivation temperature is decreased below 42 °C. Alteration of morphology correlates with changes in secretion behaviour. Mycelium cultures accumulate two-fold higher protein concentrations and contain two- to five-fold higher glucoamylase and invertase activities in the medium than budding cells. Based on these unusual properties, Arxula adeninivorans is used for heterologous gene expression and as a gene donor to construct more suitable yeasts for biotechnology. For example the Arxula glucoamylase gene was successfully expressed in Saccharomyces cerevisiae and Kluyveromyces lactis. Both transformed yeasts are able to assimilate and ferment starch as carbon source. A transformation system is used for heterologous gene expression which is based on integration of linearised DNA fragments in two to ten copies, e.g. into the 25S rDNA of A. adeninivorans by homologous recombination. The obtained transformants are mitotically stable. The expression of the lacZ gene from E. coli as well as the XylE gene from Pseudomonas putida indicates the suitability of A. adeninivorans as host for heterologous gene expression. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Microbiology and Biotechnology Springer Journals

Genetic transformation and biotechnological application of the yeast Arxula adeninivorans

Loading next page...
 
/lp/springer-journals/genetic-transformation-and-biotechnological-application-of-the-yeast-mtDtt0O4lc

References (0)

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
Springer Journals
Copyright
Copyright © 2000 by Springer-Verlag Berlin Heidelberg
Subject
Life Sciences; Microbiology; Microbial Genetics and Genomics; Biotechnology
ISSN
0175-7598
eISSN
1432-0614
DOI
10.1007/s002530000444
Publisher site
See Article on Publisher Site

Abstract

The relatively unknown, non-pathogenic, dimorphic, haploid, ascomycetous yeast Arxula adeninivorans exhibits some unusual properties which are of biotechnological interest. The yeast is able to assimilate and ferment many compounds as sole source of carbon and/or nitrogen, it utilises n-alkanes and degrades starch efficiently. A. adeninivorans features such as thermo- and haloresistance as well as the yeast's uncommon growth and secretion behaviour should be especially emphasised. In media containing up to 20% NaCl, A. adeninivorans is able to grow at cultivation temperatures up to 48 °C. Additionally, the dimorphism of the yeast is unusual. Arxula grows at up temperatures of up to 42 °C as budding cells, which turn into mycelia at higher temperatures. This environmentally conditioned dimorphism is reversible and budding is reestablished when the cultivation temperature is decreased below 42 °C. Alteration of morphology correlates with changes in secretion behaviour. Mycelium cultures accumulate two-fold higher protein concentrations and contain two- to five-fold higher glucoamylase and invertase activities in the medium than budding cells. Based on these unusual properties, Arxula adeninivorans is used for heterologous gene expression and as a gene donor to construct more suitable yeasts for biotechnology. For example the Arxula glucoamylase gene was successfully expressed in Saccharomyces cerevisiae and Kluyveromyces lactis. Both transformed yeasts are able to assimilate and ferment starch as carbon source. A transformation system is used for heterologous gene expression which is based on integration of linearised DNA fragments in two to ten copies, e.g. into the 25S rDNA of A. adeninivorans by homologous recombination. The obtained transformants are mitotically stable. The expression of the lacZ gene from E. coli as well as the XylE gene from Pseudomonas putida indicates the suitability of A. adeninivorans as host for heterologous gene expression.

Journal

Applied Microbiology and BiotechnologySpringer Journals

Published: Nov 14, 2000

There are no references for this article.