Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Empirical prediction of debris‐flow mobility and deposition on fans

Empirical prediction of debris‐flow mobility and deposition on fans A new method to predict the runout of debris flows is presented. A data base of documented sediment‐transporting events in torrent catchments of Austria, Switzerland and northern Italy has been compiled, using common classification techniques. With this data we test an empirical approach between planimetric deposition area and event volume, and compare it with results from other studies. We introduce a new empirical relation to determine the mobility coefficient as a function of geomorphologic catchment parameters. The mobility coefficient is thought to reflect some of the flow properties during the depositional part of the debris‐flow event. The empirical equations are implemented in a geographical information system (GIS) based simulation program and combined with a simple flow routing algorithm, to determine the potential runout area covered by debris‐flow deposits. For a given volume and starting point of the deposits, a Monte‐Carlo technique is used to produce flow paths that simulate the spreading effect of a debris flow. The runout zone is delineated by confining the simulated potential spreading area in the down slope direction with the empirically determined planimetric deposition area. The debris‐flow volume is then distributed over the predicted area according to the calculated outflow probability of each cell. The simulation uses the ARC‐Objects environment of ESRI© and is adapted to run with high resolution (2·5 m × 2·5 m) digital elevation models, generated for example from LiDAR data. The simulation program called TopRunDF is tested with debris‐flow events of 1987 and 2005 in Switzerland. Copyright © 2009 John Wiley & Sons, Ltd. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Earth Surface Processes and Landforms Wiley

Empirical prediction of debris‐flow mobility and deposition on fans

Loading next page...
 
/lp/wiley/empirical-prediction-of-debris-flow-mobility-and-deposition-on-fans-msVKNDsHH6

References (72)

Publisher
Wiley
Copyright
Copyright © 2009 John Wiley & Sons, Ltd.
ISSN
0197-9337
eISSN
1096-9837
DOI
10.1002/esp.1897
Publisher site
See Article on Publisher Site

Abstract

A new method to predict the runout of debris flows is presented. A data base of documented sediment‐transporting events in torrent catchments of Austria, Switzerland and northern Italy has been compiled, using common classification techniques. With this data we test an empirical approach between planimetric deposition area and event volume, and compare it with results from other studies. We introduce a new empirical relation to determine the mobility coefficient as a function of geomorphologic catchment parameters. The mobility coefficient is thought to reflect some of the flow properties during the depositional part of the debris‐flow event. The empirical equations are implemented in a geographical information system (GIS) based simulation program and combined with a simple flow routing algorithm, to determine the potential runout area covered by debris‐flow deposits. For a given volume and starting point of the deposits, a Monte‐Carlo technique is used to produce flow paths that simulate the spreading effect of a debris flow. The runout zone is delineated by confining the simulated potential spreading area in the down slope direction with the empirically determined planimetric deposition area. The debris‐flow volume is then distributed over the predicted area according to the calculated outflow probability of each cell. The simulation uses the ARC‐Objects environment of ESRI© and is adapted to run with high resolution (2·5 m × 2·5 m) digital elevation models, generated for example from LiDAR data. The simulation program called TopRunDF is tested with debris‐flow events of 1987 and 2005 in Switzerland. Copyright © 2009 John Wiley & Sons, Ltd.

Journal

Earth Surface Processes and LandformsWiley

Published: Feb 1, 2010

There are no references for this article.