Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Fore‐arc basalts and subduction initiation in the Izu‐Bonin‐Mariana system

Fore‐arc basalts and subduction initiation in the Izu‐Bonin‐Mariana system Recent diving with the JAMSTEC Shinkai 6500 manned submersible in the Mariana fore arc southeast of Guam has discovered that MORB‐like tholeiitic basalts crop out over large areas. These “fore‐arc basalts” (FAB) underlie boninites and overlie diabasic and gabbroic rocks. Potential origins include eruption at a spreading center before subduction began or eruption during near‐trench spreading after subduction began. FAB trace element patterns are similar to those of MORB and most Izu‐Bonin‐Mariana (IBM) back‐arc lavas. However, Ti/V and Yb/V ratios are lower in FAB reflecting a stronger prior depletion of their mantle source compared to the source of basalts from mid‐ocean ridges and back‐arc basins. Some FAB also have higher concentrations of fluid‐soluble elements than do spreading center lavas. Thus, the most likely origin of FAB is that they were the first lavas to erupt when the Pacific Plate began sinking beneath the Philippine Plate at about 51 Ma. The magmas were generated by mantle decompression during near‐trench spreading with little or no mass transfer from the subducting plate. Boninites were generated later when the residual, highly depleted mantle melted at shallow levels after fluxing by a water‐rich fluid derived from the sinking Pacific Plate. This magmatic stratigraphy of FAB overlain by transitional lavas and boninites is similar to that found in many ophiolites, suggesting that ophiolitic assemblages might commonly originate from near‐trench volcanism caused by subduction initiation. Indeed, the widely dispersed Jurassic and Cretaceous Tethyan ophiolites could represent two such significant subduction initiation events. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Geochemistry, Geophysics, Geosystems Wiley

Loading next page...
 
/lp/wiley/fore-arc-basalts-and-subduction-initiation-in-the-izu-bonin-mariana-lYBEpTE6ks

References (88)

Publisher
Wiley
Copyright
Copyright © 2010 by the American Geophysical Union.
ISSN
1525-2027
eISSN
1525-2027
DOI
10.1029/2009GC002871
Publisher site
See Article on Publisher Site

Abstract

Recent diving with the JAMSTEC Shinkai 6500 manned submersible in the Mariana fore arc southeast of Guam has discovered that MORB‐like tholeiitic basalts crop out over large areas. These “fore‐arc basalts” (FAB) underlie boninites and overlie diabasic and gabbroic rocks. Potential origins include eruption at a spreading center before subduction began or eruption during near‐trench spreading after subduction began. FAB trace element patterns are similar to those of MORB and most Izu‐Bonin‐Mariana (IBM) back‐arc lavas. However, Ti/V and Yb/V ratios are lower in FAB reflecting a stronger prior depletion of their mantle source compared to the source of basalts from mid‐ocean ridges and back‐arc basins. Some FAB also have higher concentrations of fluid‐soluble elements than do spreading center lavas. Thus, the most likely origin of FAB is that they were the first lavas to erupt when the Pacific Plate began sinking beneath the Philippine Plate at about 51 Ma. The magmas were generated by mantle decompression during near‐trench spreading with little or no mass transfer from the subducting plate. Boninites were generated later when the residual, highly depleted mantle melted at shallow levels after fluxing by a water‐rich fluid derived from the sinking Pacific Plate. This magmatic stratigraphy of FAB overlain by transitional lavas and boninites is similar to that found in many ophiolites, suggesting that ophiolitic assemblages might commonly originate from near‐trench volcanism caused by subduction initiation. Indeed, the widely dispersed Jurassic and Cretaceous Tethyan ophiolites could represent two such significant subduction initiation events.

Journal

Geochemistry, Geophysics, GeosystemsWiley

Published: Mar 1, 2010

There are no references for this article.