Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Polymerization in sodium silicate solutions: a fundamental process in geopolymerization technology

Polymerization in sodium silicate solutions: a fundamental process in geopolymerization technology Geopolymerization is an innovative technology that can transform several solid aluminosilicate materials into useful products called geopolymers or inorganic polymers. Although the geopolymerization mechanism is not well understood, the most proposed mechanism includes four parallel stages: (a) dissolution of solid aluminosilicate materials in alkaline sodium silicate solution, (b) oligomerization of Si and/or Si–Al in aqueous phase, (c) polymerization of the oligomeric species, and (d) bonding of undissolved solid particles in the polymer. It is obvious that polymerization in sodium silicate solutions comprises a fundamental process in geopolymerization technology. Therefore, this article aims at studying experimentally the polymerization stage in synthetic pure sodium silicate solutions. The structure of sodium silicate gels as a function of the SiO2/Na2O molar ratio is examined and their hardness as well as hydrolytic stability are determined. In addition, the effect of aluminum incorporation in the hydrolytic stability of these gels is also examined. Finally, the structure of sodium silicate and aluminosilicate gels is correlated to the measured properties drawing very useful conclusions that could be applied on geopolymerization technology. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science Springer Journals

Polymerization in sodium silicate solutions: a fundamental process in geopolymerization technology

Loading next page...
 
/lp/springer-journals/polymerization-in-sodium-silicate-solutions-a-fundamental-process-in-kNA4ATaHla

References (26)

Publisher
Springer Journals
Copyright
Copyright © 2009 by Springer Science+Business Media, LLC
Subject
Materials Science; Materials Science, general; Characterization and Evaluation of Materials; Polymer Sciences; Continuum Mechanics and Mechanics of Materials; Crystallography and Scattering Methods; Classical Mechanics
ISSN
0022-2461
eISSN
1573-4803
DOI
10.1007/s10853-009-3497-5
Publisher site
See Article on Publisher Site

Abstract

Geopolymerization is an innovative technology that can transform several solid aluminosilicate materials into useful products called geopolymers or inorganic polymers. Although the geopolymerization mechanism is not well understood, the most proposed mechanism includes four parallel stages: (a) dissolution of solid aluminosilicate materials in alkaline sodium silicate solution, (b) oligomerization of Si and/or Si–Al in aqueous phase, (c) polymerization of the oligomeric species, and (d) bonding of undissolved solid particles in the polymer. It is obvious that polymerization in sodium silicate solutions comprises a fundamental process in geopolymerization technology. Therefore, this article aims at studying experimentally the polymerization stage in synthetic pure sodium silicate solutions. The structure of sodium silicate gels as a function of the SiO2/Na2O molar ratio is examined and their hardness as well as hydrolytic stability are determined. In addition, the effect of aluminum incorporation in the hydrolytic stability of these gels is also examined. Finally, the structure of sodium silicate and aluminosilicate gels is correlated to the measured properties drawing very useful conclusions that could be applied on geopolymerization technology.

Journal

Journal of Materials ScienceSpringer Journals

Published: May 6, 2009

There are no references for this article.