Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Analysis of transcripts that are differentially expressed in three sectors of the rice root system under water deficit

Analysis of transcripts that are differentially expressed in three sectors of the rice root... Short periods of water deprivation can stimulate the growth of seminal and lateral roots in rice, and inhibit the emergence of adventitious roots. Identification of genes in the different tissues that respond to a water deficit may help us to understand the mechanism underlying root growth under conditions when water is scarce. cDNA-amplified fragment length polymorphism (AFLP) analysis was used to profile gene expression upon imposition of water deficit in three types of root tissue from the upland rice variety Azucena: seminal root tips, lateral root zones and adventitious root primordial zones. In all, 121 unique transcript-derived fragments (TDFs) were cloned, and Northern analysis was carried out for 30 TDFs to confirm their expression patterns. Sixty-six TDFs were differentially expressed in all three root samples. Four (AC2, D6, L22 and T23) were up-regulated by water deficit in seminal root tips and lateral root zones, and down-regulated in adventitious root primordial zones, an expression pattern which reflects the phenotypic changes observed in the different root sectors. In contrast, T17 and T37 showed the opposite expression pattern in Azucena: up-regulation in adventitious roots and repression in the other two zones. Functions could be assigned to five of these six TDFs on the basis of homology: they encode an expansin (T37), a fruit-ripening protein similar to ASR (T23), submergence-induced protein 2A (T17), a dehydrin (D6) and a 9- cis -epoxycarotenoid dioxygenase1 (L22), respectively. AC2 did not show a significant match to any known gene. Northern analysis showed that these six clones exhibited expression patterns that differed between the two cultivars tested (Azucena and the lowland variety IR1552) with respect to regulation by water limitation. Furthermore, T17, T37, D6 and T23 mapped within intervals known to contain QTLs (quantitative trait loci) for root growth in rice under water deficit. These genes may regulate or co-regulate the growth and development of the three root zones in a tissue-specific manner, and may play a role in the processes that underlie the early changes in root architecture under conditions of water deprivation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Molecular Genetics and Genomics Springer Journals

Analysis of transcripts that are differentially expressed in three sectors of the rice root system under water deficit

Loading next page...
 
/lp/springer-journals/analysis-of-transcripts-that-are-differentially-expressed-in-three-k2UwHQTksA

References (31)

Publisher
Springer Journals
Copyright
Copyright © 2004 by Springer-Verlag
Subject
Life Sciences; Cell Biology; Biochemistry, general; Microbial Genetics and Genomics; Plant Genetics & Genomics; Animal Genetics and Genomics
ISSN
1617-4615
eISSN
1617-4623
DOI
10.1007/s00438-004-1066-9
pmid
15480789
Publisher site
See Article on Publisher Site

Abstract

Short periods of water deprivation can stimulate the growth of seminal and lateral roots in rice, and inhibit the emergence of adventitious roots. Identification of genes in the different tissues that respond to a water deficit may help us to understand the mechanism underlying root growth under conditions when water is scarce. cDNA-amplified fragment length polymorphism (AFLP) analysis was used to profile gene expression upon imposition of water deficit in three types of root tissue from the upland rice variety Azucena: seminal root tips, lateral root zones and adventitious root primordial zones. In all, 121 unique transcript-derived fragments (TDFs) were cloned, and Northern analysis was carried out for 30 TDFs to confirm their expression patterns. Sixty-six TDFs were differentially expressed in all three root samples. Four (AC2, D6, L22 and T23) were up-regulated by water deficit in seminal root tips and lateral root zones, and down-regulated in adventitious root primordial zones, an expression pattern which reflects the phenotypic changes observed in the different root sectors. In contrast, T17 and T37 showed the opposite expression pattern in Azucena: up-regulation in adventitious roots and repression in the other two zones. Functions could be assigned to five of these six TDFs on the basis of homology: they encode an expansin (T37), a fruit-ripening protein similar to ASR (T23), submergence-induced protein 2A (T17), a dehydrin (D6) and a 9- cis -epoxycarotenoid dioxygenase1 (L22), respectively. AC2 did not show a significant match to any known gene. Northern analysis showed that these six clones exhibited expression patterns that differed between the two cultivars tested (Azucena and the lowland variety IR1552) with respect to regulation by water limitation. Furthermore, T17, T37, D6 and T23 mapped within intervals known to contain QTLs (quantitative trait loci) for root growth in rice under water deficit. These genes may regulate or co-regulate the growth and development of the three root zones in a tissue-specific manner, and may play a role in the processes that underlie the early changes in root architecture under conditions of water deprivation.

Journal

Molecular Genetics and GenomicsSpringer Journals

Published: Oct 8, 2004

There are no references for this article.