Access the full text.
Sign up today, get DeepDyve free for 14 days.
Alejandra Chacón-López, E. Ibarra-Laclette, L. Sánchez-Calderón, Dolores Gutiérrez-Alanís, L. Herrera-Estrella (2011)
Global expression pattern comparison between low phosphorus insensitive 4 and WT Arabidopsis reveals an important role of reactive oxygen species and jasmonic acid in the root tip response to phosphate starvationPlant Signaling & Behavior, 6
M. Groth, N. Takeda, J. Perry, H. Uchida, Stephan Dräxl, A. Brachmann, Shusei Sato, S. Tabata, M. Kawaguchi, Trevor Wang, M. Parniske (2010)
NENA, a Lotus japonicus Homolog of Sec13, Is Required for Rhizodermal Infection by Arbuscular Mycorrhiza Fungi and Rhizobia but Dispensable for Cortical Endosymbiotic Development[C][W]Plant Cell, 22
Bin Wang, L. Yeun, J. Xue, Yang Liu, Jean-Michel Ané, Y. Qiu (2010)
Presence of three mycorrhizal genes in the common ancestor of land plants suggests a key role of mycorrhizas in the colonization of land by plants.The New phytologist, 186 2
N. Roberts, Giulia Morieri, G. Kalsi, A. Rose, J. Stiller, A. Edwards, Fang Xie, P. Gresshoff, G. Oldroyd, J. Downie, M. Etzler (2012)
Rhizobial and Mycorrhizal Symbioses in Lotus japonicus Require Lectin Nucleotide Phosphohydrolase, Which Acts Upstream of Calcium Signaling1[C][W][OA]Plant Physiology, 161
A. Genre, M. Chabaud, A. Faccio, D. Barker, P. Bonfante (2008)
Prepenetration Apparatus Assembly Precedes and Predicts the Colonization Patterns of Arbuscular Mycorrhizal Fungi within the Root Cortex of Both Medicago truncatula and Daucus carota[W]The Plant Cell Online, 20
Swanhild Lohse, W. Schliemann, C. Ammer, J. Kopka, D. Strack, T. Fester (2005)
Organization and Metabolism of Plastids and Mitochondria in Arbuscular Mycorrhizal Roots of Medicago truncatula1[w]Plant Physiology, 139
Catalina Pislariu, Jeremy Murray, J. Wen, Viviane Cosson, Rajasekhara Muni, Mingyi Wang, Vagner Benedito, Andry Andriankaja, Xiaofei Cheng, Ivone Jerez, S. Mondy, Shulan Zhang, Mark Taylor, M. Tadege, P. Ratet, K. Mysore, Rujin Chen, M. Udvardi (2012)
A Medicago truncatula Tobacco Retrotransposon Insertion Mutant Collection with Defects in Nodule Development and Symbiotic Nitrogen Fixation1[W][OA]Plant Physiology, 159
S. Burleigh, T. Cavagnaro, I. Jakobsen (2002)
Functional diversity of arbuscular mycorrhizas extends to the expression of plant genes involved in P nutrition.Journal of experimental botany, 53 374
Adrian Alder, M. Jamil, M. Marzorati, M. Bruno, M. Vermathen, P. Bigler, S. Ghisla, H. Bouwmeester, P. Beyer, S. Al‐Babili (2012)
The Path from β-Carotene to Carlactone, a Strigolactone-Like Plant HormoneScience, 335
G. Oldroyd, J. Murray, P. Poole, J. Downie (2011)
The rules of engagement in the legume-rhizobial symbiosis.Annual review of genetics, 45
Faqiang Li, C. Murillo, E. Wurtzel (2007)
Maize Y9 Encodes a Product Essential for 15-cis-ζ-Carotene Isomerization1[OA]Plant Physiology, 144
M. Groth, S. Kosuta, C. Gutjahr, K. Haage, S. Hardel, Miriam Schaub, A. Brachmann, Shusei Sato, S. Tabata, K. Findlay, Trevor Wang, M. Parniske (2013)
Two Lotus japonicus symbiosis mutants impaired at distinct steps of arbuscule development.The Plant journal : for cell and molecular biology, 75 1
R. Nagy, D. Drissner, N. Amrhein, I. Jakobsen, M. Bucher (2009)
Mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated.The New phytologist, 181 4
C. Gutjahr, U. Paszkowski (2009)
Weights in the balance: jasmonic acid and salicylic acid signaling in root-biotroph interactions.Molecular plant-microbe interactions : MPMI, 22 7
K. Akiyama, K. Matsuzaki, H. Hayashi (2005)
Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungiNature, 435
N. Hohnjec, Martin Vieweg, A. Pühler, A. Becker, H. Küster (2005)
Overlaps in the Transcriptional Profiles of Medicago truncatula Roots Inoculated with Two Different Glomus Fungi Provide Insights into the Genetic Program Activated during Arbuscular Mycorrhiza1[w]Plant Physiology, 137
Sylvia Singh, M. Parniske (2012)
Activation of calcium- and calmodulin-dependent protein kinase (CCaMK), the central regulator of plant root endosymbiosis.Current opinion in plant biology, 15 4
S. Kosuta, S. Hazledine, Jongho Sun, H. Miwa, R. Morris, J. Downie, G. Oldroyd (2008)
Differential and chaotic calcium signatures in the symbiosis signaling pathway of legumesProceedings of the National Academy of Sciences, 105
N. Takeda, Shusei Sato, E. Asamizu, S. Tabata, M. Parniske (2009)
Apoplastic plant subtilases support arbuscular mycorrhiza development in Lotus japonicus.The Plant journal : for cell and molecular biology, 58 5
J. López-Ráez, T. Charnikhova, Victoria Gómez-Roldán, R. Matusova, W. Kohlen, R. Vos, F. Verstappen, Virginie Puech-Pagès, G. Bécard, P. Mulder, H. Bouwmeester (2008)
Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation.The New phytologist, 178 4
Daniela Floss, B. Hause, P. Lange, H. Küster, D. Strack, M. Walter (2008)
Knock-down of the MEP pathway isogene 1-deoxy-D-xylulose 5-phosphate synthase 2 inhibits formation of arbuscular mycorrhiza-induced apocarotenoids, and abolishes normal expression of mycorrhiza-specific plant marker genes.The Plant journal : for cell and molecular biology, 56 1
Tobias Kretzschmar, W. Kohlen, Joelle Sasse, L. Borghi, Markus Schlegel, J. Bachelier, D. Reinhardt, R. Bours, H. Bouwmeester, E. Martinoia (2012)
A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branchingNature, 483
C. Ruyter-Spira, S. Al‐Babili, S. Krol, H. Bouwmeester (2013)
The biology of strigolactones.Trends in plant science, 18 2
B. Hause, S. Schaarschmidt (2009)
The role of jasmonates in mutualistic symbioses between plants and soil-born microorganisms.Phytochemistry, 70 13-14
S. Kosuta, M. Chabaud, Géraldine Lougnon, C. Gough, J. Dénarié, D. Barker, G. Bécard (2003)
A Diffusible Factor from Arbuscular Mycorrhizal Fungi Induces Symbiosis-Specific MtENOD11 Expression in Roots ofMedicago truncatula 1Plant Physiology, 131
Xingliang Hou, Li Lee, Kuai-fei Xia, Yuanyuan Yan, Hao Yu (2010)
DELLAs modulate jasmonate signaling via competitive binding to JAZs.Developmental cell, 19 6
H. Javot, R. Penmetsa, Nadia Terzaghi, D. Cook, M. Harrison (2007)
A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosisProceedings of the National Academy of Sciences, 104
N. Pumplin, Xinchun Zhang, R. Noar, M. Harrison (2012)
Polar localization of a symbiosis-specific phosphate transporter is mediated by a transient reorientation of secretionProceedings of the National Academy of Sciences, 109
V. Siciliano, A. Genre, R. Balestrini, Gilda Cappellazzo, P. Dewit, P. Bonfante (2007)
Transcriptome Analysis of Arbuscular Mycorrhizal Roots during Development of the Prepenetration Apparatus1[W]Plant Physiology, 144
S. Isayenkov, Cornelia Mrosk, I. Stenzel, D. Strack, B. Hause (2005)
Suppression of Allene Oxide Cyclase in Hairy Roots of Medicago truncatula Reduces Jasmonate Levels and the Degree of Mycorrhization with Glomus intraradices1[w]Plant Physiology, 139
W. Remy, T. Taylor, H. Hass, H. Kerp (1994)
Four hundred-million-year-old vesicular arbuscular mycorrhizae.Proceedings of the National Academy of Sciences of the United States of America, 91 25
A. Brussel, R. Bakhuizen, P. Spronsen, H. Spaink, T. Tak, B. Lugtenberg, J. Kijne (1992)
Induction of Pre-Infection Thread Structures in the Leguminous Host Plant by Mitogenic Lipo-Oligosaccharides of RhizobiumScience, 257
M. Giovannetti, C. Sbrana, L. Avio, A. Citernesi, Cable Logi (1993)
Differential hyphal morphogenesis in arbuscular mycorrhizal fungi during pre-infection stages.The New phytologist, 125 3
Jeon Hong, Yong-Soon Park, Armando Bravo, Kishor Bhattarai, Dierdra Daniels, M. Harrison (2012)
Diversity of morphology and function in arbuscular mycorrhizal symbioses in Brachypodium distachyonPlanta, 236
B. Sieberer, M. Chabaud, J. Fournier, A. Timmers, D. Barker (2012)
A switch in Ca2+ spiking signature is concomitant with endosymbiotic microbe entry into cortical root cells of Medicago truncatula.The Plant journal : for cell and molecular biology, 69 5
K. Haage, M. Parniske (2013)
Molecular Mechanisms Governing Arbuscular Mycorrhiza Development and Function
D. Lauressergues, P. Delaux, D. Formey, Christine Lelandais-Brière, S. Fort, S. Cottaz, G. Bécard, A. Niebel, C. Roux, J. Combier (2012)
The microRNA miR171h modulates arbuscular mycorrhizal colonization of Medicago truncatula by targeting NSP2.The Plant journal : for cell and molecular biology, 72 3
B. Bago, P. Pfeffer, Y. Shachar-Hill (2000)
Carbon metabolism and transport in arbuscular mycorrhizas.Plant physiology, 124 3
S. Yoshida, H. Kameoka, M. Tempo, K. Akiyama, Mikihisa Umehara, Shinjiro Yamaguchi, H. Hayashi, J. Kyozuka, K. Shirasu (2012)
The D3 F-box protein is a key component in host strigolactone responses essential for arbuscular mycorrhizal symbiosis.The New phytologist, 196 4
R. Catoira, C. Galera, F. Billy, R. Penmetsa, E. Journet, F. Maillet, C. Rosenberg, D. Cook, C. Gough, J. Dénarié (2000)
Four Genes of Medicago truncatula Controlling Components of a Nod Factor Transduction PathwayPlant Cell, 12
K. Akiyama, S. Ogasawara, S. Ito, H. Hayashi (2010)
Structural Requirements of Strigolactones for Hyphal Branching in AM FungiPlant and Cell Physiology, 51
G. Nagahashi, D. Douds (1997)
Appressorium formation by AM fungi on isolated cell walls of carrot rootsNew Phytologist, 136
Yoshihiro Kobae, S. Hata (2010)
Dynamics of periarbuscular membranes visualized with a fluorescent phosphate transporter in arbuscular mycorrhizal roots of rice.Plant & cell physiology, 51 3
Mike Guether, B. Neuhäuser, R. Balestrini, M. Dynowski, U. Ludewig, P. Bonfante (2009)
A Mycorrhizal-Specific Ammonium Transporter from Lotus japonicus Acquires Nitrogen Released by Arbuscular Mycorrhizal Fungi1Plant Physiology, 150
K. Yoneyama, Xiaonan Xie, Hyun Kim, T. Kisugi, T. Nomura, H. Sekimoto, T. Yokota, Koichi Yoneyama (2011)
How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation?Planta, 235
J. Jansa, J. Jansa, F. Smith, Sarah Smith (2008)
Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi?The New phytologist, 177 3
Shu-Yi Yang, M. Grønlund, I. Jakobsen, Marianne Grotemeyer, D. Rentsch, A. Miyao, H. Hirochika, C. Kumar, V. Sundaresan, N. Salamin, Sheryl Catausan, Nicolas Mattes, S. Heuer, U. Paszkowski (2012)
Nonredundant Regulation of Rice Arbuscular Mycorrhizal Symbiosis by Two Members of the PHOSPHATE TRANSPORTER1 Gene Family[W]Plant Cell, 24
W. Kohlen, T. Charnikhova, Michiel Lammers, Tobia Pollina, P. Tóth, I. Haider, M. Pozo, R. Maagd, C. Ruyter-Spira, H. Bouwmeester, J. López-Ráez (2012)
The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis.The New phytologist, 196 2
E. Foo, J. Ross, W. Jones, J. Reid (2013)
Plant hormones in arbuscular mycorrhizal symbioses: an emerging role for gibberellins.Annals of botany, 111 5
A. Genre, P. Bonfante (2002)
Epidermal cells of a symbiosis-defective mutant of Lotus japonicus show altered cytoskeleton organisation in the presence of a mycorrhizal fungusProtoplasma, 219
R. Landgraf, S. Schaarschmidt, B. Hause (2012)
Repeated leaf wounding alters the colonization of Medicago truncatula roots by beneficial and pathogenic microorganisms.Plant, cell & environment, 35 7
Shu-Yi Yang, U. Paszkowski (2011)
Phosphate import at the arbuscule: just a nutrient?Molecular plant-microbe interactions : MPMI, 24 11
Caiyan Chen, Cui Fan, M. Gao, Hongyan Zhu (2008)
Antiquity and Function of CASTOR and POLLUX, the Twin Ion Channel-Encoding Genes Key to the Evolution of Root Symbioses in Plants1[W][OA]Plant Physiology, 149
Meritxell Antolín-Llovera, M. Ried, A. Binder, M. Parniske (2012)
Receptor kinase signaling pathways in plant-microbe interactions.Annual review of phytopathology, 50
F. Lota, S. Wegmüller, Benjamin Buer, Shusei Sato, A. Bräutigam, B. Hanf, M. Bucher (2013)
The cis-acting CTTC-P1BS module is indicative for gene function of LjVTI12, a Qb-SNARE protein gene that is required for arbuscule formation in Lotus japonicus.The Plant journal : for cell and molecular biology, 74 2
P. Franken (2010)
Molecular–Physiological Aspects of the AM Symbiosis Post Penetration
A. Besserer, G. Bécard, A. Jauneau, C. Roux, N. Séjalon‐Delmas (2008)
GR24, a Synthetic Analog of Strigolactones, Stimulates the Mitosis and Growth of the Arbuscular Mycorrhizal Fungus Gigaspora rosea by Boosting Its Energy Metabolism[C][W]Plant Physiology, 148
M. Parniske (2000)
Intracellular accommodation of microbes by plants: a common developmental program for symbiosis and disease?Current opinion in plant biology, 3 4
Jonathan Vogel, M. Walter, Patrick Giavalisco, A. Lytovchenko, W. Kohlen, T. Charnikhova, A. Simkin, C. Goulet, D. Strack, H. Bouwmeester, A. Fernie, H. Klee (2009)
SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato.The Plant journal : for cell and molecular biology, 61 2
A. Schüßler, C. Walker (2011)
7 Evolution of the ‘Plant-Symbiotic’ Fungal Phylum, Glomeromycota
N. Helber, Kathrin Wippel, N. Sauer, S. Schaarschmidt, B. Hause, N. Requena (2011)
A Versatile Monosaccharide Transporter That Operates in the Arbuscular Mycorrhizal Fungus Glomus sp Is Crucial for the Symbiotic Relationship with Plants[C][W]Plant Cell, 23
Jinyuan Liu, L. Blaylock, G. Endré, Jennifer Cho, C. Town, K. VandenBosch, M. Harrison (2003)
Transcript Profiling Coupled with Spatial Expression Analyses Reveals Genes Involved in Distinct Developmental Stages of an Arbuscular Mycorrhizal Symbiosis Online version contains Web-only data. Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpThe Plant Cell Online, 15
Claudia Hogekamp, D. Arndt, Patrícia Pereira, J. Becker, N. Hohnjec, H. Küster (2011)
Laser Microdissection Unravels Cell-Type-Specific Transcription in Arbuscular Mycorrhizal Roots, Including CAAT-Box Transcription Factor Gene Expression Correlating with Fungal Contact and Spread1[W]Plant Physiology, 157
M. Chabaud, A. Genre, B. Sieberer, A. Faccio, J. Fournier, M. Novero, D. Barker, P. Bonfante (2011)
Arbuscular mycorrhizal hyphopodia and germinated spore exudates trigger Ca2+ spiking in the legume and nonlegume root epidermis.The New phytologist, 189 1
Maria Heinrich, C. Hettenhausen, T. Lange, H. Wünsche, Jingjing Fang, I. Baldwin, Jianqiang Wu (2013)
High levels of jasmonic acid antagonize the biosynthesis of gibberellins and inhibit the growth of Nicotiana attenuata stems.The Plant journal : for cell and molecular biology, 73 4
C. Kistner, T. Winzer, A. Pitzschke, Lonneke Mulder, Shusei Sato, T. Kaneko, S. Tabata, N. Sandal, J. Stougaard, K. Webb, K. Szczyglowski, M. Parniske (2005)
Seven Lotus japonicus Genes Required for Transcriptional Reprogramming of the Root during Fungal and Bacterial Symbiosisw⃞The Plant Cell Online, 17
A. Broghammer, Lene Krusell, M. Blaise, J. Sauer, J. Sullivan, Nicolai Maolanon, Maria Vinther, Andrea Lorentzen, E. Madsen, K. Jensen, P. Roepstorff, S. Thirup, C. Ronson, M. Thygesen, J. Stougaard (2012)
Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct bindingProceedings of the National Academy of Sciences, 109
E. Wegel, L. Schauser, N. Sandal, J. Stougaard, M. Parniske (1998)
Mycorrhiza Mutants of Lotus japonicus Define Genetically Independent Steps During Symbiotic InfectionMolecular Plant-microbe Interactions, 11
K. Markmann, G. Giczey, M. Parniske (2008)
Functional Adaptation of a Plant Receptor- Kinase Paved the Way for the Evolution of Intracellular Root Symbioses with BacteriaPLoS Biology, 6
Mikihisa Umehara, A. Hanada, S. Yoshida, K. Akiyama, Tomotsugu Arite, Noriko Takeda-Kamiya, H. Magome, Y. Kamiya, K. Shirasu, K. Yoneyama, J. Kyozuka, Shinjiro Yamaguchi (2008)
Inhibition of shoot branching by new terpenoid plant hormonesNature, 455
Jori Sharda, R. Koide (2008)
Can hypodermal passage cell distribution limit root penetration by mycorrhizal fungi?The New phytologist, 180 3
P. Delaux, N. Séjalon‐Delmas, G. Bécard, Jean-Michel Ané (2013)
Evolution of the plant-microbe symbiotic 'toolkit'.Trends in plant science, 18 6
Arijit Mukherjee, Jean-Michel Ané (2011)
Germinating spore exudates from arbuscular mycorrhizal fungi: molecular and developmental responses in plants and their regulation by ethylene.Molecular plant-microbe interactions : MPMI, 24 2
C. Cook, Leona Whichard, Beverly Turner, M. Wall, G. Egley (1966)
Germination of Witchweed (Striga lutea Lour.): Isolation and Properties of a Potent StimulantScience, 154
P. Bonfante, A. Genre (2008)
Plants and arbuscular mycorrhizal fungi: an evolutionary-developmental perspective.Trends in plant science, 13 9
R. Penmetsa, P. Uribe, Jonathan Anderson, J. Lichtenzveig, J. Gish, Y. Nam, E. Engstrom, Kun Xu, G. Sckisel, M. Pereira, J. Baek, M. López-Meyer, S. Long, M. Harrison, Karam Singh, G. Kiss, D. Cook (2008)
The Medicago truncatula ortholog of Arabidopsis EIN2, sickle, is a negative regulator of symbiotic and pathogenic microbial associations.The Plant journal : for cell and molecular biology, 55 4
María Herrera-Medina, M. Tamayo, H. Vierheilig, J. Ocampo, J. García-Garrido (2008)
The Jasmonic Acid Signalling Pathway Restricts the Development of the Arbuscular Mycorrhizal Association in TomatoJournal of Plant Growth Regulation, 27
D. Cipollini, D. Walters, C. Voelckel (2014)
Costs of Resistance in Plants: From Theory to Evidence
Pari Skamnioti, S. Gurr (2007)
Magnaporthe grisea Cutinase2 Mediates Appressorium Differentiation and Host Penetration and Is Required for Full Virulence[W][OA]The Plant Cell Online, 19
Luke Bainard, J. Bainard, S. Newmaster, J. Klironomos (2011)
Mycorrhizal symbiosis stimulates endoreduplication in angiosperms.Plant, cell & environment, 34 9
Nicole Gaude, S. Bortfeld, N. Duensing, M. Lohse, F. Krajinski (2012)
Arbuscule-containing and non-colonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development.The Plant journal : for cell and molecular biology, 69 3
S. Ivanov, E. Fedorova, E. Limpens, S. Mita, A. Genre, P. Bonfante, T. Bisseling (2012)
Rhizobium–legume symbiosis shares an exocytotic pathway required for arbuscule formationProceedings of the National Academy of Sciences, 109
María Herrera-Medina, S. Steinkellner, H. Vierheilig, Juan Bote, J. Garrido (2007)
Abscisic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza.The New phytologist, 175 3
M. Novero, A. Faccio, A. Genre, J. Stougaard, K. Webb, Lonneke Mulder, M. Parniske, P. Bonfante (2002)
Dual requirement of the LjSym4 gene for mycorrhizal development in epidermal and cortical cells of Lotus japonicus roots.The New phytologist, 154 3
M. Parniske (2008)
Arbuscular mycorrhiza: the mother of plant root endosymbiosesNature Reviews Microbiology, 6
J. Fournier, A. Timmers, B. Sieberer, A. Jauneau, M. Chabaud, D. Barker (2008)
Mechanism of Infection Thread Elongation in Root Hairs of Medicago truncatula and Dynamic Interplay with Associated Rhizobial Colonization1[W][OA]Plant Physiology, 148
Sarah Smith, F. Smith, I. Jakobsen (2003)
Mycorrhizal Fungi Can Dominate Phosphate Supply to Plants Irrespective of Growth Responses1Plant Physiology, 133
P. Smit, John Raedts, V. Portyanko, F. Debellé, C. Gough, T. Bisseling, R. Geurts (2005)
NSP1 of the GRAS Protein Family Is Essential for Rhizobial Nod Factor-Induced TranscriptionScience, 308
P. Bonfante, N. Requena (2011)
Dating in the dark: how roots respond to fungal signals to establish arbuscular mycorrhizal symbiosis.Current opinion in plant biology, 14 4
I. Sanders, D. Croll (2010)
Arbuscular mycorrhiza: the challenge to understand the genetics of the fungal partner.Annual review of genetics, 44
Stefanie Rech, Sven Heidt, N. Requena (2013)
A tandem Kunitz protease inhibitor (KPI106)-serine carboxypeptidase (SCP1) controls mycorrhiza establishment and arbuscule development in Medicago truncatula.The Plant journal : for cell and molecular biology, 75 5
Florence Breuillin, Jonathan Schramm, M. Hajirezaei, Amir Ahkami, P. Favre, U. Druege, B. Hause, M. Bucher, Tobias Kretzschmar, E. Bossolini, C. Kuhlemeier, E. Martinoia, P. Franken, U. Scholz, D. Reinhardt (2010)
Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning.The Plant journal : for cell and molecular biology, 64 6
M. Dickman, Y.-S. Ha, Z. Yang, Byron Adams, C. Huang (2003)
A protein kinase from Colletotrichum trifolii is induced by plant cutin and is required for appressorium formation.Molecular plant-microbe interactions : MPMI, 16 5
C. Hamiaux, R. Drummond, B. Janssen, S. Ledger, J. Cooney, R. Newcomb, K. Snowden (2012)
DAD2 Is an α/β Hydrolase Likely to Be Involved in the Perception of the Plant Branching Hormone, StrigolactoneCurrent Biology, 22
L. Lanfranco, J. Young (2012)
Genetic and genomic glimpses of the elusive arbuscular mycorrhizal fungi.Current opinion in plant biology, 15 4
T. Fester, D. Strack, B. Hause (2001)
Reorganization of tobacco root plastids during arbuscule developmentPlanta, 213
J. Murray, Rajasekhara Muni, I. Torres-Jerez, Yuhong Tang, S. Allen, Megan Andriankaja, Guangming Li, Ashverya Laxmi, Xiaofei Cheng, J. Wen, David Vaughan, M. Schultze, Jongho Sun, M. Charpentier, G. Oldroyd, M. Tadege, P. Ratet, K. Mysore, Rujin Chen, M. Udvardi (2011)
Vapyrin, a gene essential for intracellular progression of arbuscular mycorrhizal symbiosis, is also essential for infection by rhizobia in the nodule symbiosis of Medicago truncatula.The Plant journal : for cell and molecular biology, 65 2
M. Parniske (2005)
Plant–fungal associations: Cue for the branching connectionNature, 435
K. Demchenko, T. Winzer, J. Stougaard, M. Parniske, K. Pawlowski (2004)
Distinct roles of Lotus japonicus SYMRK and SYM15 in root colonization and arbuscule formation.The New phytologist, 163 2
A. Caldicott, G. Eglinton (1976)
Cutin acids from bryophytes: An ω-1 hydroxy alkanoic acid in two liverwort speciesPhytochemistry, 15
M. Banba, C. Gutjahr, A. Miyao, H. Hirochika, U. Paszkowski, H. Kouchi, H. Imaizumi-Anraku (2008)
Divergence of evolutionary ways among common sym genes: CASTOR and CCaMK show functional conservation between two symbiosis systems and constitute the root of a common signaling pathway.Plant & cell physiology, 49 11
S. Dickson (2004)
The Arum-Paris continuum of mycorrhizal symbioses.The New phytologist, 163 1
T. Fester, D. Schmidt, Swanhild Lohse, M. Walter, G. Giuliano, P. Bramley, P. Fraser, B. Hause, D. Strack (2002)
Stimulation of carotenoid metabolism in arbuscular mycorrhizal rootsPlanta, 216
A. Genre, M. Chabaud, Coline Balzergue, Virginie Puech-Pagès, M. Novero, Thomas Rey, J. Fournier, S. Rochange, G. Bécard, P. Bonfante, D. Barker (2013)
Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone.The New phytologist, 198 1
A. Genre, Paola Bonfante (1998)
Actin versus tubulin configuration in arbuscule-containing cells from mycorrhizal tobacco roots.The New phytologist, 140 4
H. Koltai, S. Lekkala, C. Bhattacharya, E. Mayzlish-Gati, N. Resnick, S. Wininger, Evgenya Dor, K. Yoneyama, K. Yoneyama, J. Hershenhorn, D. Joel, Y. Kapulnik (2010)
A tomato strigolactone-impaired mutant displays aberrant shoot morphology and plant interactionsJournal of Experimental Botany, 61
É. Tisserant, A. Kohler, P. Dozolme-Seddas, R. Balestrini, K. Benabdellah, A. Colard, D. Croll, C. Silva, S. Gomez, R. Koul, N. Ferrol, V. Fiorilli, D. Formey, P. Franken, N. Helber, Mohamed Hijri, L. Lanfranco, E. Lindquist, Y. Liu, M. Malbreil, E. Morin, J. Poulain, H. Shapiro, D. Tuinen, A. Waschke, C. Azcón-Aguilar, G. Bécard, P. Bonfante, M. Harrison, H. Küster, P. Lammers, U. Paszkowski, N. Requena, S. Rensing, C. Roux, I. Sanders, Y. Shachar-Hill, G. Tuskan, J. Young, V. Gianinazzi‐Pearson, F. Martin (2012)
The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont.The New phytologist, 193 3
Florian Walder, H. Niemann, M. Natarajan, M. Lehmann, T. Boller, A. Wiemken (2012)
Mycorrhizal Networks: Common Goods of Plants Shared under Unequal Terms of Trade1[W][OA]Plant Physiology, 159
Nadja Feddermann, Rajasekhara Muni, Tatyana Zeier, J. Stuurman, Flavia Ercolin, M. Schorderet, D. Reinhardt (2010)
The PAM1 gene of petunia, required for intracellular accommodation and morphogenesis of arbuscular mycorrhizal fungi, encodes a homologue of VAPYRIN.The Plant journal : for cell and molecular biology, 64 3
H. Javot, R. Penmetsa, Florence Breuillin, Kishor Bhattarai, R. Noar, S. Gomez, Quan Zhang, Douglas Cook, M. Harrison (2011)
Medicago truncatula mtpt4 mutants reveal a role for nitrogen in the regulation of arbuscule degeneration in arbuscular mycorrhizal symbiosis.The Plant journal : for cell and molecular biology, 68 6
Marc Buée, M. Rossignol, Alain Jauneau, R. Ranjeva, G. Bécard (2000)
The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates.Molecular plant-microbe interactions : MPMI, 13 6
C. Gough, J. Cullimore (2011)
Lipo-chitooligosaccharide signaling in endosymbiotic plant-microbe interactions.Molecular plant-microbe interactions : MPMI, 24 8
Emanuel Devers, J. Teply, Armin Reinert, Nicole Gaude, F. Krajinski (2013)
An endogenous artificial microRNA system for unraveling the function of root endosymbioses related genes in Medicago truncatulaBMC Plant Biology, 13
N. Brewin (1998)
Tissue and Cell Invasion by Rhizobium: The Structure and Development of Infection Threads and Symbiosomes
M. Harrison (2012)
Cellular programs for arbuscular mycorrhizal symbiosis.Current opinion in plant biology, 15 6
G. Nagahashi, D. Douds (2011)
The effects of hydroxy fatty acids on the hyphal branching of germinated spores of AM fungi.Fungal biology, 115 4-5
C. Gutjahr, Leonardo Casieri, U. Paszkowski (2009)
Glomus intraradices induces changes in root system architecture of rice independently of common symbiosis signaling.The New phytologist, 182 4
Rik Camp, A. Streng, S. Mita, Q. Cao, Elisa Polone, Wei Liu, J. Ammiraju, D. Kudrna, R. Wing, A. Untergasser, T. Bisseling, R. Geurts (2011)
LysM-Type Mycorrhizal Receptor Recruited for Rhizobium Symbiosis in Nonlegume ParasponiaScience, 331
M. Harrison, G. Dewbre, Jinyuan Liu (2002)
A Phosphate Transporter from Medicago truncatula Involved in the Acquisition of Phosphate Released by Arbuscular Mycorrhizal Fungi Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.004861.The Plant Cell Online, 14
Markus Baier, M. Keck, V. Gödde, K. Niehaus, H. Küster, N. Hohnjec (2009)
Knockdown of the Symbiotic Sucrose Synthase MtSucS1 Affects Arbuscule Maturation and Maintenance in Mycorrhizal Roots of Medicago truncatula1[W]Plant Physiology, 152
Quan Zhang, L. Blaylock, M. Harrison (2010)
Two Medicago truncatula Half-ABC Transporters Are Essential for Arbuscule Development in Arbuscular Mycorrhizal Symbiosis[W]Plant Cell, 22
K. Yano, S. Yoshida, Judith Müller, Sylvia Singh, M. Banba, K. Vickers, K. Markmann, Catharine White, Bettina Schuller, Shusei Sato, E. Asamizu, S. Tabata, Y. Murooka, J. Perry, Trevor Wang, M. Kawaguchi, H. Imaizumi-Anraku, M. Hayashi, M. Parniske (2008)
CYCLOPS, a mediator of symbiotic intracellular accommodationProceedings of the National Academy of Sciences, 105
Nadja Feddermann, D. Reinhardt (2011)
Conserved residues in the ankyrin domain of VAPYRIN indicate potential protein-protein interaction surfacesPlant Signaling & Behavior, 6
S. Kosuta, M. Held, M. Hossain, Giulia Morieri, A. Macgillivary, Christopher Johansen, Meritxell Antolín-Llovera, M. Parniske, G. Oldroyd, A. Downie, Bogumil Karas, K. Szczyglowski (2011)
Lotus japonicus symRK-14 uncouples the cortical and epidermal symbiotic program.The Plant journal : for cell and molecular biology, 67 5
G. Berta, A. Fusconi, S. Sampǒ, G. Lingua, S. Perticone, O. Repetto (2000)
Polyploidy in tomato roots as affected by arbuscular mycorrhizal colonizationPlant and Soil, 226
S. Gomez, H. Javot, H. Javot, P. Deewatthanawong, I. Torres-Jerez, Yuhong Tang, E. Blancaflor, M. Udvardi, M. Harrison (2009)
Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosisBMC Plant Biology, 9
D. Urbański, Anna Małolepszy, J. Stougaard, S. Andersen (2012)
Genome-wide LORE1 retrotransposon mutagenesis and high-throughput insertion detection in Lotus japonicus.The Plant journal : for cell and molecular biology, 69 4
Ertao Wang, S. Schornack, J. Marsh, Enrico Gobbato, B. Schwessinger, P. Eastmond, M. Schultze, S. Kamoun, G. Oldroyd (2012)
A Common Signaling Process that Promotes Mycorrhizal and Oomycete Colonization of PlantsCurrent Biology, 22
James Allen, Y. Shachar-Hill (2008)
Sulfur Transfer through an Arbuscular Mycorrhiza1Plant Physiology, 149
Paola Bonfante, A. Genre, A. Faccio, Isabella Martini, L. Schauser, J. Stougaard, Judith Webb, M. Parniske (2000)
The Lotus japonicus LjSym4 gene is required for the successful symbiotic infection of root epidermal cells.Molecular plant-microbe interactions : MPMI, 13 10
Coline Balzergue, Virginie Puech-Pagès, G. Bécard, S. Rochange (2010)
The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling eventsJournal of Experimental Botany, 62
C. Gutjahr, M. Banba, Vincent Croset, Kyungsook An, A. Miyao, G. An, H. Hirochika, H. Imaizumi-Anraku, U. Paszkowski (2008)
Arbuscular Mycorrhiza–Specific Signaling in Rice Transcends the Common Symbiosis Signaling Pathway[W]The Plant Cell Online, 20
Sekhara R, M. Schorderet, U. Feller, D. Reinhardt (2007)
A petunia mutant affected in intracellular accommodation and morphogenesis of arbuscular mycorrhizal fungi.The Plant journal : for cell and molecular biology, 51 5
F. Maillet, V. Poinsot, Olivier André, Virginie Puech-Pagès, Alexandra Haouy, M. Gueunier, Laurence Cromer, Delphine Giraudet, D. Formey, A. Niebel, E. Martínez, H. Driguez, G. Bécard, J. Dénarié (2011)
Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhizaNature, 469
C. Gutjahr, D. Radovanovic, Jessika Geoffroy, Quan Zhang, H. Siegler, M. Chiapello, Leonardo Casieri, Kyungsook An, G. An, E. Guiderdoni, C. Kumar, V. Sundaresan, M. Harrison, U. Paszkowski (2012)
The half-size ABC transporters STR1 and STR2 are indispensable for mycorrhizal arbuscule formation in rice.The Plant journal : for cell and molecular biology, 69 5
E. Kiers, Marie Duhamel, Marie Duhamel, Yugandhar Beesetty, Yugandhar Beesetty, Jerry Mensah, O. Franken, E. Verbruggen, C. Fellbaum, G. Kowalchuk, M. Hart, A. Bago, T. Palmer, S. West, P. Vandenkoornhuyse, J. Jansa, H. Bücking (2011)
Reciprocal Rewards Stabilize Cooperation in the Mycorrhizal SymbiosisScience, 333
Xiaonan Xie, K. Yoneyama, K. Yoneyama (2010)
The strigolactone story.Annual review of phytopathology, 48
A. Besserer, Virginie Puech-Pagès, P. Kiefer, Victoria Gómez-Roldán, A. Jauneau, Sébastien Roy, J. Portais, C. Roux, G. Bécard, N. Séjalon‐Delmas (2006)
Strigolactones Stimulate Arbuscular Mycorrhizal Fungi by Activating MitochondriaPLoS Biology, 4
A. Mendoza-Mendoza, P. Berndt, Armin Djamei, C. Weise, U. Linne, M. Marahiel, Miroslav Vraneš, J. Kämper, R. Kahmann (2009)
Physical‐chemical plant‐derived signals induce differentiation in Ustilago maydisMolecular Microbiology, 71
A. Fusconi, G. Lingua, A. Trotta, G. Berta (2005)
Effects of arbuscular mycorrhizal colonization and phosphorus application on nuclear ploidy in Allium porrum plantsMycorrhiza, 15
Wei Liu, W. Kohlen, A. Lillo, Rik Camp, S. Ivanov, M. Hartog, E. Limpens, M. Jamil, C. Smaczniak, K. Kaufmann, Wei-cai Yang, G. Hooiveld, T. Charnikhova, H. Bouwmeester, T. Bisseling, R. Geurts (2011)
Strigolactone Biosynthesis in Medicago truncatula and Rice Requires the Symbiotic GRAS-Type Transcription Factors NSP1 and NSP2[W][OA]Plant Cell, 23
Sarah Smith, F. Smith (2011)
Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales.Annual review of plant biology, 62
A. Genre, Sergey Ivanov, M. Fendrych, A. Faccio, Viktor Zarsky, T. Bisseling, Paola Bonfante (2012)
Multiple exocytotic markers accumulate at the sites of perifungal membrane biogenesis in arbuscular mycorrhizas.Plant & cell physiology, 53 1
Victoria Gómez-Roldán, Soraya Fermas, Philip Brewer, Virginie Puech-Pagès, Elizabeth Dun, J. Pillot, F. Létisse, R. Matusova, S. Danoun, J. Portais, H. Bouwmeester, G. Bécard, C. Beveridge, C. Rameau, S. Rochange (2008)
Strigolactone inhibition of shoot branchingNature, 455
N. Ghachtouli, J. Martin-Tanguy, M. Paynot, S. Gianinazzi (1996)
First‐report of the inhibition of arbuscular mycorrhizal infection of Pisum sativum by specific and irreversible inhibition of polyamine biosynthesis or by gibberellic acid treatmentFEBS Letters, 385
E. Blancaflor, Liming Zhao, M. Harrison (2005)
Microtubule organization in root cells ofMedicago truncatula during development of an arbuscular mycorrhizal symbiosis withGlomus versiformeProtoplasma, 217
H. Javot, N. Pumplin, M. Harrison (2007)
Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles.Plant, cell & environment, 30 3
Dong-Lei Yang, Jian Yao, C. Mei, Xiaohong Tong, Longjun Zeng, Qun Li, Langtao Xiao, Tai-ping Sun, Jigang Li, X. Deng, Chin-Mei Lee, M. Thomashow, Yinong Yang, Zuhua He, S. He (2012)
Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascadeProceedings of the National Academy of Sciences, 109
E. Fukai, T. Soyano, Y. Umehara, S. Nakayama, H. Hirakawa, S. Tabata, Shusei Sato, M. Hayashi (2012)
Establishment of a Lotus japonicus gene tagging population using the exon-targeting endogenous retrotransposon LORE1.The Plant journal : for cell and molecular biology, 69 4
N. Pumplin, Stephen Mondo, Stephanie Topp, Colby Starker, J. Gantt, M. Harrison (2010)
Medicago truncatula Vapyrin is a novel protein required for arbuscular mycorrhizal symbiosis.The Plant journal : for cell and molecular biology, 61 3
A. Genre, M. Chabaud, T. Timmers, P. Bonfante, D. Barker (2005)
Arbuscular Mycorrhizal Fungi Elicit a Novel Intracellular Apparatus in Medicago truncatula Root Epidermal Cells before Infection[W]The Plant Cell Online, 17
B. Oláh, C. Brière, G. Bécard, J. Dénarié, C. Gough (2005)
Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway.The Plant journal : for cell and molecular biology, 44 2
Yoshihiro Kobae, Yosuke Tamura, Shoko Takai, M. Banba, S. Hata (2010)
Localized expression of arbuscular mycorrhiza-inducible ammonium transporters in soybean.Plant & cell physiology, 51 9
P. Delaux, G. Bécard, J. Combier (2013)
NSP1 is a component of the Myc signaling pathway.The New phytologist, 199 1
C. Kistner, M. Parniske (2002)
Evolution of signal transduction in intracellular symbiosis.Trends in plant science, 7 11
A. Genre, G. Ortu, C. Bertoldo, E. Martino, P. Bonfante (2009)
Biotic and Abiotic Stimulation of Root Epidermal Cells Reveals Common and Specific Responses to Arbuscular Mycorrhizal Fungi1[W]Plant Physiology, 149
Silke Kloppholz, Hannah Kuhn, N. Requena (2011)
A Secreted Fungal Effector of Glomus intraradices Promotes Symbiotic BiotrophyCurrent Biology, 21
R. Denison, E. Kiers (2011)
Life Histories of Symbiotic Rhizobia and Mycorrhizal FungiCurrent Biology, 21
N. Pumplin, M. Harrison (2009)
Live-Cell Imaging Reveals Periarbuscular Membrane Domains and Organelle Location in Medicago truncatula Roots during Arbuscular Mycorrhizal Symbiosis1[W][OA]Plant Physiology, 151
Enrico Gobbato, John F. Marsh, T. Vernié, Ertao Wang, F. Maillet, Jiyoung Kim, J. Benjamin Miller, Jongho Sun, S. Asma Bano, P. Ratet, K. Mysore, J. Dénarié, M. Schultze, G. Oldroyd (2012)
A GRAS-Type Transcription Factor with a Specific Function in Mycorrhizal SignalingCurrent Biology, 22
D. Drissner, Gernot Kunze, N. Callewaert, P. Gehrig, M. Tamasloukht, T. Boller, G. Felix, N. Amrhein, M. Bucher (2007)
Lyso-Phosphatidylcholine Is a Signal in the Arbuscular Mycorrhizal SymbiosisScience, 318
N. Takeda, T. Maekawa, M. Hayashi (2012)
Nuclear-Localized and Deregulated Calcium- and Calmodulin-Dependent Protein Kinase Activates Rhizobial and Mycorrhizal Responses in Lotus japonicus[W]Plant Cell, 24
Caifu Jiang, Xiuhua Gao, L. Liao, N. Harberd, Xiangdong Fu (2007)
Phosphate Starvation Root Architecture and Anthocyanin Accumulation Responses Are Modulated by the Gibberellin-DELLA Signaling Pathway in Arabidopsis1[OA]Plant Physiology, 145
F. Martin, V. Gianinazzi‐Pearson, Mohamed Hijri, P. Lammers, N. Requena, I. Sanders, Y. Shachar-Hill, H. Shapiro, G. Tuskan, J. Young (2008)
The long hard road to a completed Glomus intraradices genome.The New phytologist, 180 4
G. Nagahashi, D. Douds (2000)
Partial separation of root exudate components and their effects upon the growth of germinated spores of AM fungiFungal Biology, 104
E. Foo, K. Yoneyama, Cassandra Hugill, L. Quittenden, J. Reid (2013)
Strigolactones and the regulation of pea symbioses in response to nitrate and phosphate deficiency.Molecular plant, 6 1
Leonardo Casieri, K. Gallardo, D. Wipf (2012)
Transcriptional response of Medicago truncatula sulphate transporters to arbuscular mycorrhizal symbiosis with and without sulphur stressPlanta, 235
Hannah Kuhn, H. Küster, N. Requena (2010)
Membrane steroid-binding protein 1 induced by a diffusible fungal signal is critical for mycorrhization in Medicago truncatula.The New phytologist, 185 3
R. Sawers, C. Gutjahr, U. Paszkowski (2008)
Cereal mycorrhiza: an ancient symbiosis in modern agriculture.Trends in plant science, 13 2
P. Kaló, C. Gleason, A. Edwards, J. Marsh, R. Mitra, R. Mitra, Sibylle Hirsch, J. Jakab, S. Sims, S. Long, J. Rogers, G. Kiss, J. Downie, G. Oldroyd (2005)
Nodulation Signaling in Legumes Requires NSP2, a Member of the GRAS Family of Transcriptional RegulatorsScience, 308
C. Gutjahr, M. Novero, Mike Guether, O. Montanari, M. Udvardi, P. Bonfante (2009)
Presymbiotic factors released by the arbuscular mycorrhizal fungus Gigaspora margarita induce starch accumulation in Lotus japonicus roots.The New phytologist, 183 1
The default mineral nutrient acquisition strategy of land plants is the symbiosis with arbuscular mycorrhiza (AM) fungi. Research into the cell and developmental biology of AM revealed fascinating insights into the plasticity of plant cell development and of interorganismic communication. It is driven by the prospect of increased exploitation of AM benefits for sustainable agriculture. The plant cell developmental program for intracellular accommodation of AM fungi is activated by a genetically defined signaling pathway involving calcium spiking in the nucleus as second messenger. Calcium spiking is triggered by chitooligosaccharides released by AM fungi that are probably perceived via LysM domain receptor kinases. Fungal infection and calcium spiking are spatiotemporally coordinated, and only cells committed to accommodating the fungus undergo high-frequency spiking. Delivery of mineral nutrients by AM fungi occurs at tree-shaped hyphal structures, the arbuscules, in plant cortical cells. Nutrients are taken up at a plant-derived periarbuscular membrane, which surrounds fungal hyphae and carries a specific transporter composition that is of direct importance for symbiotic efficiency. An elegant study has unveiled a new and unexpected mechanism for specific protein localization to the periarbuscular membrane, which relies on the timing of gene expression to synchronize protein biosynthesis with a redirection of secretion. The control of AM development by phytohormones is currently subject to active investigation and has led to the rediscovery of strigolactones. Nearly all tested phytohormones regulate AM development, and major insights into the mechanisms of this regulation are expected in the near future.
Annual Review of Cell and Developmental Biology – Annual Reviews
Published: Oct 6, 2013
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.