Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Predicting the potential distribution of plant species in an alpine environment

Predicting the potential distribution of plant species in an alpine environment Abstract. The relationships between the distribution of alpine species and selected environmental variables are investigated by using two types of generalized linear models (GLMs) in a limited study area in the Valais region (Switzerland). The empirical relationships are used in a predictive sense to mimic the potential abundances of alpine species over a regular grid. Here, we present the results for the alpine sedge Carex curvula ssp. curvula. The modelling approach consists of (1) a binomial GLM, including only the mean annual temperature as explanatory variable, which is adjusted to species presence/absence data in the entire study area; (2) a logistic model restricted to stands occurring within the a priori defined temperature range for the species ‐ which allows ordinal abundance data to be adjusted; (3) the two species‐response functions combined in a GIS to generate a map of the species' potential abundance in the study area; (4) model predictions filtered by the classes of the qualitative variables under which the species never occur. Such a stratified approach used to better fit the variability within the optimal altitudinal zone for the species. Removing stand descriptions from altitudes too high or too low, where the species is unlikely to occur, enhances the global modelling performance by allowing the identification of important environmental variables only retained in the second model. The model evaluation is finally carried out with the γ‐measure of association in an ordinal contingency table. It shows that abundance is satisfactorily predicted for C. curvula. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Vegetation Science Wiley

Predicting the potential distribution of plant species in an alpine environment

Loading next page...
 
/lp/wiley/predicting-the-potential-distribution-of-plant-species-in-an-alpine-hIf7QNERp9

References (36)

Publisher
Wiley
Copyright
1998 IAVS ‐ the International Association of Vegetation Science
ISSN
1100-9233
eISSN
1654-1103
DOI
10.2307/3237224
Publisher site
See Article on Publisher Site

Abstract

Abstract. The relationships between the distribution of alpine species and selected environmental variables are investigated by using two types of generalized linear models (GLMs) in a limited study area in the Valais region (Switzerland). The empirical relationships are used in a predictive sense to mimic the potential abundances of alpine species over a regular grid. Here, we present the results for the alpine sedge Carex curvula ssp. curvula. The modelling approach consists of (1) a binomial GLM, including only the mean annual temperature as explanatory variable, which is adjusted to species presence/absence data in the entire study area; (2) a logistic model restricted to stands occurring within the a priori defined temperature range for the species ‐ which allows ordinal abundance data to be adjusted; (3) the two species‐response functions combined in a GIS to generate a map of the species' potential abundance in the study area; (4) model predictions filtered by the classes of the qualitative variables under which the species never occur. Such a stratified approach used to better fit the variability within the optimal altitudinal zone for the species. Removing stand descriptions from altitudes too high or too low, where the species is unlikely to occur, enhances the global modelling performance by allowing the identification of important environmental variables only retained in the second model. The model evaluation is finally carried out with the γ‐measure of association in an ordinal contingency table. It shows that abundance is satisfactorily predicted for C. curvula.

Journal

Journal of Vegetation ScienceWiley

Published: Feb 1, 1998

There are no references for this article.