Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Synthesis and Lithium Storage Properties of Co 3 O 4 Nanosheet‐Assembled Multishelled Hollow Spheres

Synthesis and Lithium Storage Properties of Co 3 O 4 Nanosheet‐Assembled Multishelled Hollow Spheres Single‐, double‐, and triple‐shelled hollow spheres assembled by Co3O4 nanosheets are successfully synthesized through a novel method. The possible formation mechanism of these novel structures was investigated using powder X‐ray diffraction, scanning and transmission electron microscopies, Fourier transform IR, X‐ray photoelectron spectroscopy, and thermogravimetric analysis. Both poly(vinylpyrrolidone) (PVP) soft templates and the formation of cobalt glycolate play key roles in the formation of these novel multishelled hollow structures. When tested as the anode material in lithium‐ion batteries (LIBs), these multishelled microspheres exhibit excellent cycling performance, good rate capacity, and enhanced lithium storage capacity. This superior cyclic stability and capacity result from the synergetic effect of small diffusion lengths in the nanosheet building blocks and sufficient void space to buffer the volume expansion. This facile strategy may be extended to synthesize other transition metal oxide materials with hollow multishelled micro‐/nanostrucutures, which may find application in sensors and catalysts due to their unique structural features. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Functional Materials Wiley

Synthesis and Lithium Storage Properties of Co 3 O 4 Nanosheet‐Assembled Multishelled Hollow Spheres

Loading next page...
 
/lp/wiley/synthesis-and-lithium-storage-properties-of-co-3-o-4-nanosheet-eNpKR0KZRz

References (45)

Publisher
Wiley
Copyright
Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
1616-301X
eISSN
1616-3028
DOI
10.1002/adfm.200902295
Publisher site
See Article on Publisher Site

Abstract

Single‐, double‐, and triple‐shelled hollow spheres assembled by Co3O4 nanosheets are successfully synthesized through a novel method. The possible formation mechanism of these novel structures was investigated using powder X‐ray diffraction, scanning and transmission electron microscopies, Fourier transform IR, X‐ray photoelectron spectroscopy, and thermogravimetric analysis. Both poly(vinylpyrrolidone) (PVP) soft templates and the formation of cobalt glycolate play key roles in the formation of these novel multishelled hollow structures. When tested as the anode material in lithium‐ion batteries (LIBs), these multishelled microspheres exhibit excellent cycling performance, good rate capacity, and enhanced lithium storage capacity. This superior cyclic stability and capacity result from the synergetic effect of small diffusion lengths in the nanosheet building blocks and sufficient void space to buffer the volume expansion. This facile strategy may be extended to synthesize other transition metal oxide materials with hollow multishelled micro‐/nanostrucutures, which may find application in sensors and catalysts due to their unique structural features.

Journal

Advanced Functional MaterialsWiley

Published: May 25, 2010

There are no references for this article.