Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Restoration of ecosystem function in an abandoned sandpit: plant and soil responses to paper de‐inking sludge

Restoration of ecosystem function in an abandoned sandpit: plant and soil responses to paper... 1. In minesoil reclamation, the establishment of a sustainable plant cover requires the improvement of limiting conditions and the re‐initiation of carbon (C) and nutrient cycling. 2. The approach used in this study for reclaiming an abandoned sandpit in Quebec, Canada, was based on a heavy organic amendment as an attempt to accelerate the reconstruction of a functional ecosystem. 3. The one‐time intervention consisted of incorporating paper de‐inking sludge into soil at two rates (0 and 105 dry t ha–1), supplemented with nitrogen (N) at three rates (3, 6 and 9 g kg–1 sludge) and phosphorus (P) at two rates (0·5 and 1·0 g kg–1 sludge) followed by seeding (mid‐summer) of Agropyron elongatum (Host) Beauv. (tall wheatgrass). 4. Standing biomass increased in the presence of sludge after both the first and second full growing seasons. High N application rates further increased yield, more importantly in the second season. The high P rate improved grass establishment in all cases. Ground cover increased with time and doubled in the presence of sludge whereas it declined in the absence of sludge. Phosphorus and N uptake was improved consistently in the presence of sludge. 5. Sludge application resulted in improved water retention and cation exchange capacities, and an increase in pH and bulk density of sandpit minesoil, all of which may have accounted for the significant improvement in plant responses. Levels of soil C and N suggest that this reconstructed system is approaching sustainability. 6. Adequate N and P supplements will accentuate the positive influence of sludge on revegetation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Ecology Wiley

Restoration of ecosystem function in an abandoned sandpit: plant and soil responses to paper de‐inking sludge

Loading next page...
 
/lp/wiley/restoration-of-ecosystem-function-in-an-abandoned-sandpit-plant-and-dtwOHXvXtI

References (22)

Publisher
Wiley
Copyright
Copyright © 1999 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0021-8901
eISSN
1365-2664
DOI
10.1046/j.1365-2664.1999.00395.x
Publisher site
See Article on Publisher Site

Abstract

1. In minesoil reclamation, the establishment of a sustainable plant cover requires the improvement of limiting conditions and the re‐initiation of carbon (C) and nutrient cycling. 2. The approach used in this study for reclaiming an abandoned sandpit in Quebec, Canada, was based on a heavy organic amendment as an attempt to accelerate the reconstruction of a functional ecosystem. 3. The one‐time intervention consisted of incorporating paper de‐inking sludge into soil at two rates (0 and 105 dry t ha–1), supplemented with nitrogen (N) at three rates (3, 6 and 9 g kg–1 sludge) and phosphorus (P) at two rates (0·5 and 1·0 g kg–1 sludge) followed by seeding (mid‐summer) of Agropyron elongatum (Host) Beauv. (tall wheatgrass). 4. Standing biomass increased in the presence of sludge after both the first and second full growing seasons. High N application rates further increased yield, more importantly in the second season. The high P rate improved grass establishment in all cases. Ground cover increased with time and doubled in the presence of sludge whereas it declined in the absence of sludge. Phosphorus and N uptake was improved consistently in the presence of sludge. 5. Sludge application resulted in improved water retention and cation exchange capacities, and an increase in pH and bulk density of sandpit minesoil, all of which may have accounted for the significant improvement in plant responses. Levels of soil C and N suggest that this reconstructed system is approaching sustainability. 6. Adequate N and P supplements will accentuate the positive influence of sludge on revegetation.

Journal

Journal of Applied EcologyWiley

Published: Apr 1, 1999

There are no references for this article.